Cultural, biological and chemical control of the white rot fungus (Sclerotium cepivorum, Berk) in onions (Allium cepa) in Arequipa´s countryside

2018 ◽  
Vol 2 (3) ◽  
pp. 27
Author(s):  
M. Gonzales ◽  
L. Mattos
2020 ◽  
Vol 12 (12) ◽  
pp. 2491-2507
Author(s):  
Claudio A Valero-Jiménez ◽  
Maikel B F Steentjes ◽  
Jason C Slot ◽  
Xiaoqian Shi-Kunne ◽  
Olga E Scholten ◽  
...  

Abstract Fungi of the genus Botrytis infect >1,400 plant species and cause losses in many crops. Besides the broad host range pathogen Botrytis cinerea, most other species are restricted to a single host. Long-read technology was used to sequence genomes of eight Botrytis species, mostly pathogenic on Allium species, and the related onion white rot fungus, Sclerotium cepivorum. Most assemblies contained <100 contigs, with the Botrytis aclada genome assembled in 16 gapless chromosomes. The core genome and pan-genome of 16 Botrytis species were defined and the secretome, effector, and secondary metabolite repertoires analyzed. Among those genes, none is shared among all Allium pathogens and absent from non-Allium pathogens. The genome of each of the Allium pathogens contains 8–39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus Botrytis and family Sclerotiniaceae were reconstructed. The genomes of B. cinerea and B. aclada were highly syntenic with only 19 rearrangements between them. Genomes of Allium pathogens were compared with ten other Botrytis species (nonpathogenic on Allium) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different Botrytis species. We provide evidence that the clusters for botcinic acid production in B. cinerea and Botrytis sinoallii were acquired by horizontal transfer from taxa within the same genus.


1978 ◽  
Vol 58 (3) ◽  
pp. 819-822 ◽  
Author(s):  
R. S. UTKHEDE ◽  
J. E. RAHE

Two hundred and ninety-four accessions to the USDA world germplasm collection of Allium cepa were screened for resistance to Sclerotium cepivorum, the causal agent of white rot. The trial was conducted on organic muck soil in Burnaby, British Columbia, with uniformly high levels of added inoculum. Percent white rot infection in bulbs at harvest was measured and significant differences (P = 0.05) among the accessions occurred. High levels of resistance were found in at least three of the accessions, but none was immune.


2012 ◽  
Vol 3 (1) ◽  
pp. 20-21
Author(s):  
A.Sangeetha A.Sangeetha ◽  
◽  
K.Thanigai K.Thanigai ◽  
Narasimhamurthy Narasimhamurthy ◽  
S.K.Nath S.K.Nath

2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

2018 ◽  
Vol 69 (1) ◽  
pp. 38-44
Author(s):  
Nicoleta Mirela Marin ◽  
Olga Tiron ◽  
Luoana Florentina Pascu ◽  
Mihaela Costache ◽  
Mihai Nita Lazar ◽  
...  

This study investigates the synergistic effects of ion exchange and biodegradation methods to remove the Acid Blue 193 also called Gryfalan Navy Blue RL (GNB) dye from wastewater. Ion exchange studies were performed using a strongly basic anion exchange resin Amberlite IRA 400. The equilibrium was characterized by a kinetic and thermodynamic points of view, establishing that the sorption of the GNB dye was subject to the Freundlich isotherm model with R2 = 0.8710. Experimental results showed that the activated resin can removed up to 93.4% when the concentration of dye solution is 5.62�10-2 mM. The biodegradation of the GNB was induced by laccase, an enzyme isolated from white-rot fungus. It was also analyzed the role of pH and dye concentration on GNB biodegradation, so 5�10-2 mM dye had a maximum discoloration efficiency of 82.9% at pH of 4. The laccase showed a very fast and robust activity reaching in a few minutes a Km value of 2.2�10-1mM. In addition, increasing the GNB concentration up to 8�10-1 mM did not triggered a substrat inhibition effect on the laccase activity. Overall, in this study we proposed a mixt physicochemical and biological approach to enhance the GNB removal and biodegradability from the wastewaters and subsequently the environment.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 189-198 ◽  
Author(s):  
V. P. Lankinen ◽  
M. M. Inkeröinen ◽  
J. Pellinen ◽  
A. I. Hatakka

Decrease of adsorbable organic chlorine (AOX) is becoming the most important criterion for the efficiency of pulp mill effluent treatment in the 1990s. Two methods, designated MYCOR and MYCOPOR which utilize the white-rot fungus Phanerochaete chrysosporium have earlier been developed for the color removal of pulp mill effluents, but the processes have also a capacity to decrease the amount of chlorinated organic compounds. Lignin peroxidases (ligninases) produced by P. chrvsosporium may dechlorinate chlorinated phenols. In this work possibilities to use selected white-rot fungi in the treatment of E1-stage bleach plant effluent were studied. Phlebia radiata. Phanerochaete chrvsosporium and Merulius (Phlebia) tremellosus were compared in shake flasks for their ability to produce laccase, lignin peroxidase(s) and manganese-dependent peroxidase(s) and to remove color from a medium containing effluent. Softwood bleaching effluents were treated by carrier-immobilized P. radiata in 2 1 bioreactors and a 10 1 BiostatR -fermentor. Dechlorination was followed using Cl ion and AOX determinations. All fungi removed the color of the effluent. In P. radiata cultivations AOX decrease was ca. 4 mg l−1 in one day. Apparent lignin peroxidase activities as determined by veratryl alcohol oxidation method were negligible or zero in a medium with AOX content of ca. 60 mg l−1, prepared using about 20 % (v/v) of softwood effluent. However, the purification of extracellular enzymes implied that large amounts of lignin peroxidases were present in the medium and, after the purification, in active form. Enzyme proteins were separated using anion exchange chromatography, and they were further characterized by electrophoresis (SDS-PAGE) to reveal the kind of enzymes that were present during AOX decrease and color removal. The most characteristic lignin peroxidase isoenzymes in effluent media were LiP2 and LiP3.


2021 ◽  
Author(s):  
Thaina Louzada dos Santos ◽  
Orlando Carlos Huertas Tavares ◽  
Samuel de Abreu Lopes ◽  
Sael Sánchez Elias ◽  
Ricardo Luiz Louro Berbara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document