scholarly journals Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

1994 ◽  
Author(s):  
K.C. Ikwuakor



2021 ◽  
Author(s):  
Mohamed Masoud ◽  
W. Scott Meddaugh ◽  
Masoud Eljaroshi ◽  
Khaled Elghanduri

Abstract The Harash Formation was previously known as the Ruaga A and is considered to be one of the most productive reservoirs in the Zelten field in terms of reservoir quality, areal extent, and hydrocarbon quantity. To date, nearly 70 wells were drilled targeting the Harash reservoir. A few wells initially naturally produced but most had to be stimulated which reflected the field drilling and development plan. The Harash reservoir rock typing identification was essential in understanding the reservoir geology implementation of reservoir development drilling program, the construction of representative reservoir models, hydrocarbons volumetric calculations, and historical pressure-production matching in the flow modelling processes. The objectives of this study are to predict the permeability at un-cored wells and unsampled locations, to classify the reservoir rocks into main rock typing, and to build robust reservoir properties models in which static petrophysical properties and fluid properties are assigned for identified rock type and assessed the existed vertical and lateral heterogeneity within the Palaeocene Harash carbonate reservoir. Initially, an objective-based workflow was developed by generating a training dataset from open hole logs and core samples which were conventionally and specially analyzed of six wells. The developed dataset was used to predict permeability at cored wells through a K-mod model that applies Neural Network Analysis (NNA) and Declustring (DC) algorithms to generate representative permeability and electro-facies. Equal statistical weights were given to log responses without analytical supervision taking into account the significant log response variations. The core data was grouped on petrophysical basis to compute pore throat size aiming at deriving and enlarging the interpretation process from the core to log domain using Indexation and Probabilities of Self-Organized Maps (IPSOM) classification model to develop a reliable representation of rock type classification at the well scale. Permeability and rock typing derived from the open-hole logs and core samples analysis are the main K-mod and IPSOM classification model outputs. The results were propagated to more than 70 un-cored wells. Rock typing techniques were also conducted to classify the Harash reservoir rocks in a consistent manner. Depositional rock typing using a stratigraphic modified Lorenz plot and electro-facies suggest three different rock types that are probably linked to three flow zones. The defined rock types are dominated by specifc reservoir parameters. Electro-facies enables subdivision of the formation into petrophysical groups in which properties were assigned to and were characterized by dynamic behavior and the rock-fluid interaction. Capillary pressure and relative permeability data proved the complexity in rock capillarity. Subsequently, Swc is really rock typing dependent. The use of a consistent representative petrophysical rock type classification led to a significant improvement of geological and flow models.





2000 ◽  
Vol 3 (02) ◽  
pp. 150-159 ◽  
Author(s):  
Maghsood Abbaszadeh ◽  
Naoki Koide ◽  
Yoya Murahashi

Summary This article presents applications of deterministic and conditional geostatistical reservoir characterization methods to the heterogeneous carbonates of the upper Shuaiba formation in Daleel field, Oman. High-resolution reservoir descriptions based on the integration of logs, core, pressure transient tests, geology, and seismic data are constructed; and upscaled for use in reservoir simulation models to history match field performance data. Generally, geostatistical techniques combined with geology and proper upscaling of permeability heterogeneity yield best results without artificial alterations in various fluid and rock properties. Although acceptable history matches can be obtained with compromised less-detailed reservoir descriptions, these require modifications to reservoir data beyond reasonable ranges. Only detailed and concise reservoir descriptions result in history matches that are consistent with a variety of measured data sources. Introduction Reservoir characterization has gained a new momentum in the past decade, largely due to the introduction of geostatistical methods to the petroleum industry and rapid progress made in their advancement.1 The keen interest in reservoir characterization arises because it is well recognized that reservoir heterogeneity has a profound affect on all phases of hydrocarbon recovery, ranging from oil in-place calculations to sweep and conformance efficiency determination of various injection processes. Thus, any improved understanding of a reservoir will aid in better management and better exploitation of its hydrocarbon recovery potential. The challenge in understanding and predicting reservoir performance is two-fold: first, to describe reservoir geologic heterogeneities realistically and quantitatively, and second to model reservoir flow behavior in the presence of all heterogeneities accurately and efficiently.2 While large-scale reservoir features (such as main layers or major faults) can be described by deterministic techniques, less-correlated medium-scale and more-chaotic small-scale heterogeneities may be characterized by geostatistical methods or related interpolative techniques. This is especially true for estimating interwell reservoir properties based on a limited amount of information available at wells. The approaches to reservoir characterization fall into three categories: deterministic, stochastic, and combination of the two. The deterministic approach has been in use for several decades and ample success with it has been reported. The interwell properties are generally interpolated or extrapolated using algorithms based on the inverse-distance-square principle or variations of it. Usually, adjustments to the number of layers, gridblock properties, relative permeabilities, and even fluid properties are made in order to history match field performance. Some of these adjustments are warranted and some are solely knobs that are arbitrarily tuned in simulation models without physical bases. Thus, the resulting reservoir models may lack reliability and predictive capability. Geostatistical methods, however, generate multiple realizations of reservoir heterogeneity that honor available data, but differ from one another by interwell properties where direct information is not available. The data used in these models are by in large of static nature coming mainly from cores, logs, and seismic attribute extractions. Dynamic information, such as pressure transient tests and production data, are usually excluded from explicit use in geostatistical reservoir characterization, primarily due to difficulty on how to best integrate them a priori into such models. However, recent advances have been made for direct inclusion of this dynamic information through the techniques of simulated annealing3 or direct volume-averaged upscaling.4 Nevertheless, these geostatical reservoir descriptions are capable of capturing detailed geology more realistically and of producing acceptable history matches to field performance data without artificial alterations to various reservoir or fluid properties.5–10 This article applies both methods of deterministic and geostatistical reservoir characterizations to describe and history match the primary recovery performance of a complex carbonate reservoir in Daleel field, Oman. This is a comparative study in an attempt to identify an applicable description method for this field to aid in its exploitation. The deterministic model investigates effects of layering and fluid bubblepoint pressure on production performance. The geostatistical approaches model detailed reservoir heterogeneity and evaluate the importance of proper representation of heterogeneity in flow simulations. During the course of the study, new or alternate approaches for various elements of reservoir characterization techniques have been developed, which are also included. Background Field Description. The reservoir of Daleel field is an elongated carbonate shoal sands and back carbonates in the upper Shuaiba formation. Five geographical sedimentary environments of protected back shoal, shoal, shoal margin slope, inner shelf, and outer shelf comprise the formation. The productive portion of the reservoir is situated in the protected back shoal region (central part of the carbonate mound) and its marginal parts are located in regions with alternating cycles of shoal and shelf sequences. The reservoir is a stratigraphic-structural oil trap accumulation. Bioclastic peloidal packstone and wackstone form the main reservoir sedimentary material in this field. Repeated upward shallowing parasequence cycles, which relate to the geographical sedimentary environment, are recognized on wireline responses. These parasequence boundaries may be considered as synchronous surfaces for interwell correlation. Detailed core and thin section studies have identified 12 lithofacies in the upper Shuaiba, ranging from coarse grain porous limestone to argillaceous lime and lime mudstone. Microstylolites, burrowing and other forms of diagenesis are common. Therefore, pore/throat size distribution and their connectivity as influenced by secondary diagenesis processes mainly control porosity and permeability developments. Significant changes in these lithofacies occur laterally and vertically, and there is an important tightly consolidated discontinuous lime mudstone deposit in the middle of the productive upper zone in the central part of the field.



2021 ◽  
Vol 11 (4) ◽  
pp. 1577-1595
Author(s):  
Rasoul Ranjbar-Karami ◽  
Parisa Tavoosi Iraj ◽  
Hamzeh Mehrabi

AbstractKnowledge of initial fluids saturation has great importance in hydrocarbon reservoir analysis and modelling. Distribution of initial water saturation (Swi) in 3D models dictates the original oil in place (STOIIP), which consequently influences reserve estimation and dynamic modelling. Calculation of initial water saturation in heterogeneous carbonate reservoirs always is a challenging task, because these reservoirs have complex depositional and diagenetic history with a complex pore network. This paper aims to model the initial water saturation in a pore facies framework, in a heterogeneous carbonate reservoir. Petrographic studies were accomplished to define depositional facies, diagenetic features and pore types. Accordingly, isolated pores are dominant in the upper parts, while the lower intervals contain more interconnected interparticle pore types. Generally, in the upper and middle parts of the reservoir, diagenetic alterations such as cementation and compaction decreased the primary reservoir potential. However, in the lower interval, which mainly includes high-energy shoal facies, high reservoir quality was formed by primary interparticle pores and secondary dissolution moulds and vugs. Using huge number of primary drainage mercury injection capillary pressure tests, we evaluate the ability of FZI, r35Winland, r35Pittman, FZI* and Lucia’s petrophysical classes in definition of rock types. Results show that recently introduced rock typing method is an efficient way to classify samples into petrophysical rock types with same pore characteristics. Moreover, as in this study MICP data were available from every one meter of reservoir interval, results show that using FZI* method much more representative sample can be selected for SCAL laboratory tests, in case of limitation in number of SCAL tests samples. Integration of petrographic analyses with routine (RCAL) and special (SCAL) core data resulted in recognition of four pore facies in the studied reservoir. Finally, in order to model initial water saturation, capillary pressure data were averaged in each pore facies which was defined by FZI* method and using a nonlinear curve fitting approach, fitting parameters (M and C) were extracted. Finally, relationship between fitting parameters and porosity in core samples was used to model initial water saturation in wells and between wells. As permeability prediction and reservoir rock typing are challenging tasks, findings of this study help to model initial water saturation using log-derived porosity.



2014 ◽  
Vol 04 (08) ◽  
pp. 373-385 ◽  
Author(s):  
Rahim Kadkhodaie Ilkhchi ◽  
Reza Rezaee ◽  
Reza Moussavi Harami ◽  
Henrik Friis ◽  
Ali Kadkhodaie Ilkhchi


Sign in / Sign up

Export Citation Format

Share Document