scholarly journals A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

1992 ◽  
Author(s):  
V.N. Kabadi
2017 ◽  
Vol 35 (13) ◽  
pp. 1334-1342 ◽  
Author(s):  
Seyed Ali Razeghi ◽  
Vladimir Mitrovic ◽  
Solomon Adjei Marfo

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Banabas Dogah ◽  
Vahid Atashbari ◽  
Mohabbat Ahmadi ◽  
Brent Sheets

Alaska holds more than 68 billion barrels of proved oil reserves and more than 36.7 trillion cubic feet of proved natural gas reserves with some special conditions such as proximity to permafrost, making Alaskan petroleum reserves unique. The low temperature in shallow reservoirs prohibited hydrocarbons’ ideal maturation, thereby generating several heavy and viscous oil accumulations in this state. This also limits the enhanced oil recovery (EOR) options, leaving the thermal methods off the table to avoid permafrost thawing, which can cause wellbore collapse. Several solutions have been attempted for improving oil production from heavy and viscous oil in Alaska; however, they have not yielded the desired recovery, and ultimate recovery factors are still less than the global average. One solution identified as a better alternative is using CO2 as an injecting fluid, alternated by water or mixed with other injectants. This paper provides a comprehensive overview of all studies on using CO2 for enhanced oil recovery purposes in Alaska and highlights common and unique challenges this approach may face. The suitability of CO2-EOR methods in the Alaskan oil pools is examined, and a ranking of the oil pools with publicly available data is provided.


SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 803-818 ◽  
Author(s):  
Mehrnoosh Moradi Bidhendi ◽  
Griselda Garcia-Olvera ◽  
Brendon Morin ◽  
John S. Oakey ◽  
Vladimir Alvarado

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.


Sign in / Sign up

Export Citation Format

Share Document