shallow reservoirs
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Abdulla Ebrahim Aljawder ◽  
Ahmed Mohamed Aljanahi ◽  
Hassan Ebrahim Almannai ◽  
Omar Ali Matar ◽  
Eyad Mohamed Ali ◽  
...  

Abstract One known risk of the Awali field is hole collapsing in the surface section due to the presence of floating bloulders and cavities in areas of the field; resulting in wells being abandoned as conventional drilling was not enough to solve this issue. In 2019, Schlumberger and Tatweer Petroleum combined forces to improve production of Ostracod/Magwa shallow reservoirs by drilling wells in new areas of the field which included drilling in locations with offset wells that were abandoned due to hole collapse issues in the first 500’ interval. Drilling campaign started in june 2019 and drilled succesfully two wells, but two others were abandonned due to hole collapse issues. These abandonned wells were in very promising production areas as per the reservoir model and due to the shallowenest of the reservoir, it was not possible to move the surface location. Therefore, the issues in the surface section needed to be solved in order to maximize profits in the country. Following a rigerous study for determining which is the optimal solution for drilling the surface section in this area of the field, Casing While Drilling (CwD) technology was selected and implemented in August 2019 in well A-1530D, next to the previous abandoned wells. CwD operation was performed with excellent results by drilling from 101ft to 520ft with no issues. CwD successfully isolated the higly problematic zones in the surface section and more importantly, allowed to reach areas of the reservoir that had high potential for production.


2021 ◽  
Author(s):  
Danny Hidayat ◽  
Rantoe Marindha ◽  
Triantoro Ade Nugroho ◽  
Reyhan Hidayat ◽  
Runi Kusumaning Rusdi

Abstract Peciko Field currently produces gas from multilayer sand-prone shallow reservoirs. Therefore, it needs sand control method to unlock these marginal reservoirs through low-cost intervention. Hanging screen has been reviewed as an alternative solution to minimize sand control cost while maintaining its robustness to maximize the recovery. This paper will present and evaluate the hanging screen installation and performance from subsurface to surface elements in Peciko field. Hanging screen implementation in Peciko will be evaluated in terms of ease of installation to its performance during production phase. Peciko wells are equipped with real-time monitoring system including Acoustic Sand Detector. Therefore, sand problems could be easily identified. Any indication of screen failure will be confirmed by checking the surface equipment like chokes and intrusive probes. Further intervention to retrieve the screen and perform visual check at surface can be executed to extend the verification. Filter size, placement method, clean-up, and sand sieve result will be gathered to identify the root cause and determine the best method to apply hanging screen as reliable sand control method. Nine installations in 2019 conclude that screen plugging, liquid loading, and combination of both are main issues in production phase. With three plugging cases from well Fx and E2x, it was found that excessive drawdown pressure triggers high gas velocity in perforation tunnel and causing excessive sand production that plugged the screen. These cases also prove that self-unloading by choke movement can lead to plugging if the drawdown pressure and gas rate are not monitored carefully. Commingle production in Ax becomes an issue in lifting performance when reservoir pressure declines and liquid was produced from several reservoirs. Limiting drawdown pressure gives smaller gas rate to lift the liquid and make the well died from liquid loading easily. Massive sand production in well E2x and E2y cause an increase in Top of Sediment (TOS) and lead to inaccessible screen even with multiple bailing attempts. A series of screen design, choke configuration, proper clean-up and continuous monitoring are critical steps to be performed prior and after screen installation to maintain production lifetime. With average stakes of 0.2 Bcf per well, hanging screen has proven to produce 67% of the well reserves in shallow reservoirs. This value creation led to the conclusion that hanging screen is an economically-feasible-sand control method to be implemented in Peciko.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyadarshi Chinmoy Kumar ◽  
Tiago M. Alves ◽  
Kalachand Sain

AbstractThis work uses a high-quality 3D seismic volume from offshore Canterbury Basin, New Zealand, to investigate how submarine canyon systems can focus sub-surface fluid. The seismic volume was structurally conditioned to improve the contrast in seismic reflections, preserving their lateral continuity. It reveals multiple pockmarks, eroded gullies and intra-slope lobe complexes occurring in association with the Waitaki Submarine Canyon. Pockmarks are densely clustered on the northern bank of the canyon and occur at a water depth of 500–900 m. In parallel, near-seafloor strata contain channel-fill deposits, channel lobes, meandering channel belts and overbank sediments deposited downslope of the submarine canyon. We propose that subsurface fluid migrates from relatively deep Cretaceous strata through shallow channel-fill deposits and lobes to latter seep out through the canyon and associated gullies. The new, reprocessed Fluid Cube meta-attribute confirms that fluids have seeped out through the eroded walls of the Waitaki Canyon, with such a seepage generating seafloor depressions in its northern bank. Our findings stress the importance of shallow reservoirs (channel-fill deposits and lobes) as potential repositories for fluid, hydrocarbons, or geothermal energy on continental margins across the world.


2021 ◽  
Vol 734 (1) ◽  
pp. 012038
Author(s):  
Haonan Liu ◽  
Xiaotao Wen ◽  
Jian He ◽  
Qianshu Chen ◽  
Xiaoqi Zhang

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Jackson Waburoko ◽  
Congjiao Xie ◽  
Kegang Ling

Recovery efficiency is a key factor in decision-making in oil and gas projects. Although structural setup and well type considerably influence waterflood recovery, few studies have explored the performance of highly deviated wells during the waterflooding of complex shallow reservoirs. Here, we applied numerical simulations to investigate the performance of vertical, horizontal, multilateral, and highly deviated wells during waterflooding of complex shallow reservoirs using the J1 Oilfield as a case study. Recovery efficiencies of 31%, 33%, 31%, and 26% could be achieved for vertical, horizontal, multilateral, and highly deviated wells, respectively. The gas production rate was 39% higher in the vertical wells than in the other types. Highly deviated wells yielded the highest water-cut (80%) over a short period. Highly deviated wells delivered the least production, and, despite branching laterals, multilateral wells were also not the most productive. Our results provide insights into the performance of different well types during the waterflooding of green heterogeneous non-communicating reservoirs and present an example of the successful practical application of waterflooding as an initial recovery mechanism when oil is near the bubble point. This study indicated that multilateral wells are not a panacea in reservoir development. Highly deviated wells are the ideal choice for the shallow, heterogeneous non-communicating reservoirs when economic and environmental impact are considered in decision-making. Well design should be a case-by-case study considering reservoir characteristics, economics, and environment impact.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Banabas Dogah ◽  
Vahid Atashbari ◽  
Mohabbat Ahmadi ◽  
Brent Sheets

Alaska holds more than 68 billion barrels of proved oil reserves and more than 36.7 trillion cubic feet of proved natural gas reserves with some special conditions such as proximity to permafrost, making Alaskan petroleum reserves unique. The low temperature in shallow reservoirs prohibited hydrocarbons’ ideal maturation, thereby generating several heavy and viscous oil accumulations in this state. This also limits the enhanced oil recovery (EOR) options, leaving the thermal methods off the table to avoid permafrost thawing, which can cause wellbore collapse. Several solutions have been attempted for improving oil production from heavy and viscous oil in Alaska; however, they have not yielded the desired recovery, and ultimate recovery factors are still less than the global average. One solution identified as a better alternative is using CO2 as an injecting fluid, alternated by water or mixed with other injectants. This paper provides a comprehensive overview of all studies on using CO2 for enhanced oil recovery purposes in Alaska and highlights common and unique challenges this approach may face. The suitability of CO2-EOR methods in the Alaskan oil pools is examined, and a ranking of the oil pools with publicly available data is provided.


Fisheries ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 53-58
Author(s):  
Anatoly Sadchikov ◽  
Sergey Ostroumov

Using the radioisotope method, new quantitative characteristics of the role of phytoplankton in the formation of the pool of dissolved organic substances (ROS) in the freshwater ecosystem were obtained. The destruction of dead phytoplankton is carried out within one week. In natural reservoirs, detritus settles at a rate of about one meter per day. In deep reservoirs, most of the MOAT is released in the water column rich in oxygen, where it is destroyed by bacterioplankton. In shallow reservoirs (such as fish ponds), detritus particles do not have time to decompose in the water column. Their further destruction is carried out at the bottom of the reservoir when there is a lack of oxygen, which leads to overseas phenomena.


Author(s):  
Michael J. Branney ◽  
Jan Zalasiewicz

‘Making and breaking volcanoes’ addresses how volcanoes are constructed and denuded and explains the shape of volcanoes and their internal architecture, including the differences between scoria cones, tuff rings, maars, and dome fields, shield volcanoes, and stratocones. Some volcanoes (‘monogenetic’ volcanoes) erupt just once, whereas others (‘polygenetic’ volcanoes) may continue erupting intermittently for millions of years. When sufficient magma is rapidly expelled from the shallow reservoirs beneath the volcano the overlying ground is left unsupported and collapses, creating a large topographic basin known as a caldera. As the caldera founders, its steep sides, formed so abruptly, are unstable and collapse inwards as a series of landslides. Tall volcanoes tend to collapse sideways in giant landslides, then grow and collapse again. Rain and meltwater also wears away volcanoes, forming lahars and floods, and choking drainage systems.


Sign in / Sign up

Export Citation Format

Share Document