Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery

Author(s):  
M.A. Nasiri ◽  
D. Biria
SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 803-818 ◽  
Author(s):  
Mehrnoosh Moradi Bidhendi ◽  
Griselda Garcia-Olvera ◽  
Brendon Morin ◽  
John S. Oakey ◽  
Vladimir Alvarado

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.


2012 ◽  
Vol 496 ◽  
pp. 542-545
Author(s):  
Xiang Ping Kong

The enhanced oil recovery characteristics of a Geobacillus sp. was investigated by shake flask experiments, blind-tube oil displacement experiments and core flooding tests. The strain exhibited good properties such as resisting high temperature, taking different types of crude oil as the sole carbon source, reducing the viscosity of crude oil, emulsifying and dispersing crude oil or liquid wax. The oil in the dead area could be effectively driven out by the strain, and the oil recovery of original oil in place had been increased by 12.9-15.9% after 5 treatments in 50 days by adopting air-assistant technique (air/liquid 10:1, v/v) due to the synergistic effect of the bacteria and their metabolites such as biogas and biosurfactants. The strain seems to be a promising candidate for microbial enhanced oil recovery and underground sewage treatment technology.


Sign in / Sign up

Export Citation Format

Share Document