scholarly journals Kinetics of in situ combustion. SUPRI TR 91

Author(s):  
D.D. Mamora ◽  
H.J. Jr. Ramey ◽  
W.E. Brigham ◽  
L.M. Castanier
1988 ◽  
Vol 3 (04) ◽  
pp. 1308-1316 ◽  
Author(s):  
Sidqi A. Abu-Khamsin ◽  
William E. Brigham ◽  
Henry J. Ramey

2009 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Marie Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

2015 ◽  
Vol 122 (3) ◽  
pp. 1375-1384 ◽  
Author(s):  
Mikhail A. Varfolomeev ◽  
Ruslan N. Nagrimanov ◽  
Andrey V. Galukhin ◽  
Alexey V. Vakhin ◽  
Boris N. Solomonov ◽  
...  

1972 ◽  
Vol 12 (05) ◽  
pp. 410-422 ◽  
Author(s):  
J.G. Burger

Abstract General remarks on the oxidation reactions of hydrocarbons involved in in-situ combustion are followed by estimates of heat releases. A formula is derived for computing the heat of combustion in the high-temperature zone. Reaction kinetics in porous media applied to the in-situ combustion porous media applied to the in-situ combustion process is discussed. It is observed that there is process is discussed. It is observed that there is some similarity between the kinetics of reverse and partially quenched combustion processes. The influence of additives on crude oil oxidation in porous media is illustrated by effluent gas analysis experiments. Some information concerning the values of the kinetic parameters of the reaction controlling the velocity of a reverse combustion front is derived from the interpretation of laboratory experiments, using a numerical model. Introduction A great deal of laboratory and field work has been done on thermal recovery methods. The importance and limitations of these techniques have been extensively studied. However, some of the chemical and physical problems involved that needed to be elucidated were studied as part of a research program carried out by the Institut Francais du Petrole. Specific problems are created by in-situ combustion since both the possibility of combustion-front propagation and the air requirement are controlled by the extent of the exothermic oxidation reactions. Actually, the propagation velocity of a forward combustion front depends on the fuel formation and combustion, which are controlled by the kinetics of these processes; furthermore, the peak temperature is related to the heat released by oxidation and combustion reactions. Therefore, a quantitative estimation of the parameters related to the chemical aspects of the parameters related to the chemical aspects of the process is a necessary step in studying combustion process is a necessary step in studying combustion through a porous medium. General and theoretical considerations on heats of reaction and kinetics are presented and illustrated by experimental data and numerical interpretation of the results. HEAT RELEASED IN THE OXIDATION OF HYDROCARBONS DESCRIPTION OF OXIDATION REACTIONS A great number of reaction products are produced by the oxidation of hydrocarbons. By taking into account the formation of bonds between one carbon atom and oxygen, it is possible to derive the most important processes. Complete combustion, (1) 2 2 2 2H H3R C R  +  ---- O  → RR  +  CO + H O Incomplete combustion, (2) 2 2H H R C R  +  O  → RR  +  CO  +  H O Oxidation to carboxylic acid, (3) 2 2 2H OH H3 OR C H  +  --- O  → R - C  +  H O Oxidation to aldehyde, (4) H H R C Oxidation to ketone, (5) 2 2H O H R C R '  +  O  → R - C - R;  +  H O Oxidation to alcohol, (6) R' R; R C H SPEJ p. 410


2008 ◽  
Author(s):  
Murat Cinar ◽  
Louis Castanier ◽  
Anthony Robert Kovscek

Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Sign in / Sign up

Export Citation Format

Share Document