scholarly journals Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

2017 ◽  
Author(s):  
Erin Hoffmann Lay
2002 ◽  
Vol 29 (6) ◽  
pp. 1-1-1-4 ◽  
Author(s):  
K. Parameswaran ◽  
K. Rajeev ◽  
M. N. Sasi ◽  
Geetha Ramkumar ◽  
B. V. Krishna Murthy

2014 ◽  
Vol 119 (3) ◽  
pp. 2187-2196 ◽  
Author(s):  
J. Park ◽  
H. Lühr ◽  
C. Lee ◽  
Y. H. Kim ◽  
G. Jee ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


2019 ◽  
Vol 124 (2) ◽  
pp. 451-467 ◽  
Author(s):  
P. Llamedo ◽  
J. Salvador ◽  
A. Torre ◽  
J. Quiroga ◽  
P. Alexander ◽  
...  

2017 ◽  
Vol 122 (15) ◽  
pp. 7869-7880 ◽  
Author(s):  
Masaru Kogure ◽  
Takuji Nakamura ◽  
Mitsumu K. Ejiri ◽  
Takanori Nishiyama ◽  
Yoshihiro Tomikawa ◽  
...  

2006 ◽  
Vol 24 (4) ◽  
pp. 1175-1188 ◽  
Author(s):  
E. Becker ◽  
D. C. Fritts

Abstract. We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere. We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004). In the present version, however, the model includes no gravity wave (GW) parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height. The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower thermosphere during June-August 2002 requires an enhanced Lorenz energy cycle and correspondingly enhanced GW sources in the troposphere, which in the model show up in both hemispheres.


1996 ◽  
Vol 23 (3) ◽  
pp. 261-264 ◽  
Author(s):  
D. J. Karoly ◽  
G. L. Roff ◽  
M. J. Reeder

Sign in / Sign up

Export Citation Format

Share Document