scholarly journals Spectral Equivalence Properties of Higher-Order Tensor Product Finite Elements and Applications to Preconditioning.

2021 ◽  
Author(s):  
Clark Dohrmann
2013 ◽  
Vol 444-445 ◽  
pp. 703-711
Author(s):  
Akio Ishida ◽  
Takumi Noda ◽  
Jun Murakami ◽  
Naoki Yamamoto ◽  
Chiharu Okuma

Higher-order singular value decomposition (HOSVD) is known as an effective technique to reduce the dimension of multidimensional data. We have proposed a method to perform third-order tensor product expansion (3OTPE) by using the power method for the same purpose as HOSVD, and showed that our method had a better accuracy property than HOSVD, and furthermore, required fewer computation time than that. Since our method could not be applied to the tensors of fourth-order (or more) in spite of having those useful properties, we extend our algorithm of 3OTPE calculation to forth-order tensors in this paper. The results of newly developed method are compared to those obtained by HOSVD. We show that the results follow the same trend as the case of 3OTPE.


Materials ◽  
2003 ◽  
Author(s):  
David A. Jack ◽  
Douglas E. Smith

Orientation tensors are widely used to describe fiber distri-butions in short fiber reinforced composite systems. Although these tensors capture the stochastic nature of concentrated fiber suspensions in a compact form, the evolution equation for each lower order tensor is a function of the next higher order tensor. Flow calculations typically employ a closure that approximates the fourth-order orientation tensor as a function of the second order orientation tensor. Recent work has been done with eigen-value based and invariant based closure approximations of the fourth-order tensor. The effect of using lower order tensors tensors in process simulations by reconstructing the distribution function from successively higher order orientation tensors in a Fourier series representation is considered. This analysis uses the property that orientation tensors are related to the series expansion coefficients of the distribution function. Errors for several closures are investigated and compared with errors developed when using a reconstruction from the exact 2nd, 4th, and 6th order orientation tensors over a range of interaction coefficients from 10−4 to 10−1 for several flow fields.


Sign in / Sign up

Export Citation Format

Share Document