Characterization of Offshore Storage Resource Potential in the Central Planning Area of the Gulf of Mexico

2021 ◽  
Author(s):  
Mike Godec ◽  
Jalal Jalali ◽  
George Koperna ◽  
Gerald Hill ◽  
Anne Oudinot ◽  
...  
2017 ◽  
Author(s):  
Samuel T. Barber ◽  
◽  
Kaylyn C. Bellais ◽  
D. Alex Beebe ◽  
M.W. Clark
Keyword(s):  

2018 ◽  
Vol 137 ◽  
pp. 501-508 ◽  
Author(s):  
Alexandra E. Morrison ◽  
Charvanaa Dhoonmoon ◽  
Helen K. White

2005 ◽  
Vol 71 (6) ◽  
pp. 3235-3247 ◽  
Author(s):  
Heath J. Mills ◽  
Robert J. Martinez ◽  
Sandra Story ◽  
Patricia A. Sobecky

ABSTRACT The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristin Yeoman ◽  
Mary B. O’Connor ◽  
Sara Sochor ◽  
Gerald Poplin

Abstract Background Transportation events are the most common cause of offshore fatalities in the oil and gas industry, of which helicopter accidents comprise the majority. Little is known about injury distributions in civilian helicopter crashes, and knowledge of injury distributions could focus research and recommendations for enhanced injury prevention and post-crash survival. This study describes the distribution of injuries among fatalities in Gulf of Mexico oil and gas industry-related helicopter accidents, provides a detailed injury classification to identify potential areas of enhanced safety design, and describes relevant safety features for mitigation of common injuries. Methods Decedents of accidents during 2004–2014 were identified, and autopsy reports were requested from responsible jurisdictions. Documented injuries were coded using the Abbreviated Injury Scale (AIS), and frequency and proportion of injuries by AIS body region and severity were calculated. Injuries were categorized into detailed body regions to target areas for prevention. Results A total of 35 autopsies were coded, with 568 injuries documented. Of these, 23.4% were lower extremity, 22.0% were thorax, 13.6% were upper extremity, and 13.4% were face injuries. Minor injuries were most prevalent in the face, neck, upper and lower extremities, and abdomen. Serious or worse injuries were most prevalent in the thorax (53.6%), spine (50.0%), head (41.7%), and external/other regions (75.0%). The most frequent injuries by detailed body regions were thoracic organ (23.0%), thoracic skeletal (13.3%), abdominal organ (9.6%), and leg injuries (7.4%). Drowning occurred in 13 (37.1%) of victims, and drowning victims had a higher proportion of moderate brain injuries (7.8%) and lower number of documented injuries (3.8) compared with non-drowning victims (2.9 and 9.4%, respectively). Conclusions Knowledge of injury distributions focuses and prioritizes the need for additional safety features not routinely used in helicopters. The most frequent injuries occurred in the thorax and lower extremity regions. Future research requires improved and expanded data, including collection of detailed data to allow characterization of both injury mechanism and distribution. Improved safety systems including airbags and helmets should be implemented and evaluated for their impact on injuries and fatalities.


2018 ◽  
Vol 6 (1) ◽  
pp. SBi-SBii
Author(s):  
Balázs Németh ◽  
Gábor Tari ◽  
Gábor Bada ◽  
Dejan Radivojević ◽  
Bruno Tomljenovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document