scholarly journals One-dimensional calculation of flow branching using the method of characteristics

1978 ◽  
Author(s):  
R.W. Meier ◽  
R.G. Gido
1992 ◽  
Vol 114 (4) ◽  
pp. 459-463 ◽  
Author(s):  
Yuan Mao Huang

The one-dimensional, unsteady flow in an air-to-air heat exchanger is studied. The governing equations are derived and the method of characteristics with the uniform interval scheme is used in the analysis. The effect of the fin improvement factor on the air temperature in the heat exchanger and the heat transfer rate of the heat exchanger, and air properties in the heat exchanger are analyzed. The numerical results are compared and show good agreement with the available data.


Author(s):  
Hans U. Burri

A brief outline is given of the method of characteristics for the analysis of one-dimensional nonsteady flow. Two typical types of experiments are discussed which indicate the degree of accuracy possible if this method is applied to machinery like the Comprex supercharger. As an example, a typical analysis is presented for one particular engine-performance point. It is possible to duplicate engine test results with acceptable accuracy.


1967 ◽  
Vol 27 (3) ◽  
pp. 561-580 ◽  
Author(s):  
Paul A. Taub

An analytical model of the interaction of a fibre tangle with an airflow is proposed. This model replaces the discrete fibres by a continuum medium with a non-linear stress-strain law. The governing equations have been examined for one-dimensional unsteady flow configurations and have been found to possess five characteristic directions.A numerical-solution procedure, based upon the method of characteristics, has been outlined and applied to the flow within a dilation chamber. A fibre sample is located at the centre of the chamber, which is alternately pressurized and depressurized.


Author(s):  
V. I. Korzyuk ◽  
O. A. Kovnatskaya

In this paper we obtain a classical solution of the one-dimensional wave equation with conditions on the characteristics for different areas this problem is considered in. The analytical solution is constructed by the method of characteristics. In addition, the uniqueness of the obtained solution is proved. The necessity and sufficiency of the matching conditions for given functions of the problem are proved. When these conditions are satisfied and the given functions are smooth enough, the classical solution of the considered problem exists.


1974 ◽  
Vol 41 (4) ◽  
pp. 1047-1051 ◽  
Author(s):  
J. W. Phillips

Wittrick’s general one-dimensional equations governing the propagation of small elastic disturbances in a helical waveguide are solved by the method of characteristics, and numerical results for a particular interface problem are compared with strain gage records from an impacted experimental model. The agreement between theory and experiment is found to be excellent for the type of pulse considered, namely, an initially longitudinal compressive pulse approximately seventy rod-diameters in length.


Sign in / Sign up

Export Citation Format

Share Document