Validation of diesel engine gas flow one-dimensional numerical analysis using the method of characteristics

2020 ◽  
Vol 56 (3) ◽  
pp. 230-237
Author(s):  
Kyong-Hyon KIM ◽  
Kyeong-Ju KONG
2020 ◽  
Vol 8 (12) ◽  
pp. 1036
Author(s):  
Kyong-Hyon Kim ◽  
Kyeong-Ju Kong

In order to design a diesel engine system and to predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. Gas flow analysis in a three-dimensional (3D) format needs a high-resolution workstation and an enormous amount of time for analysis. Calculation using the method of characteristics (MOC), which is a gas flow analysis in a one-dimensional (1D) format, has a fast calculation time and can be analyzed with a low-resolution workstation. However, there is a problem with poor accuracy in certain areas. It was assumed that the reason was that 1D could not implement the shape. The error that occurs in the shape of the bent pipe used in the intake and exhaust ports of the diesel engine was analyzed and to find a solution to the low accuracy, the results of the experiment and 1D analysis were compared. The discharge coefficient was calculated using the average mass flow rate, and as a result of applying it, the accuracy was improved for the maximum negative pressure by 0.56–1.93% and the maximum pressure by 3.11–7.86% among the intake pipe pressure results. The difference in phase of the exhaust pipe pressure did not improve. It is considered as a limitation of 1D analysis that does not improve even by applying the discharge coefficient. In the future, we intend to implement a bent pipe that cannot be realized in 1D using a 3D format and to prepare a method to supplement the reliability by using 1D–3D coupling.


1992 ◽  
Vol 114 (4) ◽  
pp. 459-463 ◽  
Author(s):  
Yuan Mao Huang

The one-dimensional, unsteady flow in an air-to-air heat exchanger is studied. The governing equations are derived and the method of characteristics with the uniform interval scheme is used in the analysis. The effect of the fin improvement factor on the air temperature in the heat exchanger and the heat transfer rate of the heat exchanger, and air properties in the heat exchanger are analyzed. The numerical results are compared and show good agreement with the available data.


Author(s):  
Hans U. Burri

A brief outline is given of the method of characteristics for the analysis of one-dimensional nonsteady flow. Two typical types of experiments are discussed which indicate the degree of accuracy possible if this method is applied to machinery like the Comprex supercharger. As an example, a typical analysis is presented for one particular engine-performance point. It is possible to duplicate engine test results with acceptable accuracy.


1967 ◽  
Vol 27 (3) ◽  
pp. 561-580 ◽  
Author(s):  
Paul A. Taub

An analytical model of the interaction of a fibre tangle with an airflow is proposed. This model replaces the discrete fibres by a continuum medium with a non-linear stress-strain law. The governing equations have been examined for one-dimensional unsteady flow configurations and have been found to possess five characteristic directions.A numerical-solution procedure, based upon the method of characteristics, has been outlined and applied to the flow within a dilation chamber. A fibre sample is located at the centre of the chamber, which is alternately pressurized and depressurized.


1976 ◽  
Vol 18 (3) ◽  
pp. 161-166
Author(s):  
J. F. T. MacLaren ◽  
A. B. Tramschek ◽  
O. F. Pastrana ◽  
A. Sanjines

A scheme which combines the ‘leap-frog’ method and the method of characteristics was found to be an efficient way to solve the unsteady gas flow equations which form the basis of mathematical models of compressor or engine systems.


Author(s):  
V. I. Korzyuk ◽  
O. A. Kovnatskaya

In this paper we obtain a classical solution of the one-dimensional wave equation with conditions on the characteristics for different areas this problem is considered in. The analytical solution is constructed by the method of characteristics. In addition, the uniqueness of the obtained solution is proved. The necessity and sufficiency of the matching conditions for given functions of the problem are proved. When these conditions are satisfied and the given functions are smooth enough, the classical solution of the considered problem exists.


1974 ◽  
Vol 41 (4) ◽  
pp. 1047-1051 ◽  
Author(s):  
J. W. Phillips

Wittrick’s general one-dimensional equations governing the propagation of small elastic disturbances in a helical waveguide are solved by the method of characteristics, and numerical results for a particular interface problem are compared with strain gage records from an impacted experimental model. The agreement between theory and experiment is found to be excellent for the type of pulse considered, namely, an initially longitudinal compressive pulse approximately seventy rod-diameters in length.


Sign in / Sign up

Export Citation Format

Share Document