scholarly journals HFIR spent fuel management alternatives

1992 ◽  
Author(s):  
J Begovich ◽  
V Green ◽  
L Shappert ◽  
A Lotts
2009 ◽  
Vol 12 (7-8) ◽  
pp. 955-967
Author(s):  
M.P. Ram Mohan ◽  
Veena Aggarwal
Keyword(s):  

Author(s):  
V. Wittebolle

Abstract In Belgium 57% of the electricity is presently generated by 7 nuclear units of the PWR type located in Doel and Tihange. Their total output amounts to 5632 MWe. Part of the spent fuel unloaded from the first three units has been sent till 2000 for reprocessing in the Cogema facility at La Hague. As the reprocessing of the spent fuel produced by the last four units is not covered by the contracts concluded with Cogema, Synatom, the Belgian utilities’ subsidiary in charge of the front- and back-end of the nuclear fuel cycle for all PWR reactors in Belgium, decided to study the possible solutions for a temporary storage of this spent fuel. End of 1993, the Belgian government decided that reprocessing (closed cycle) and direct disposal (open cycle) of spent fuel had to be considered as equal options in the back-end policy for nuclear fuel in Belgium. The resolution further allowed continued execution of a running reprocessing contract (from 1978) and use of the corresponding Pu for MOX in Belgian NPP’s, but requested a reprocessing contract concluded in 1990 (for reprocessing services after 2000) not to be executed during a five-year period. During this period priority was to be given to studies on the once-through cycle as an option for spent fuel management. Figure 1 is a chart showing the two alternatives for the spent fuel cycle in Belgium. In this context, Synatom entrusted Belgatom1 to develop a dedicated flask (called “bottle”) for direct disposal of spent fuel, to perform a design study of an appropriate encapsulation process and to prepare a preliminary feasibility study of a complete spent fuel conditioning plant. Meanwhile preparation works were made for the construction of an interim storage facility on both NPP sites of Doel and Tihange in order to meet increasing storage capacity needs. For selecting the type of interim storage facility, Belgatom performed a technical-economical analysis. Considerations of design and safety criteria as well as flexibility, reversibility, technical constraints, global economical aspects and construction time led to adopt dry storage with dual purpose casks (in operation since end 1995) for the Doel site and wet storage in a modular pool for the Tihange site (in operation since 1997). In parallel, ONRAF/NIRAS, the Belgian Agency for the management of radioactive waste and enriched fissile materials and the Belgian nuclear research centre, SCK•CEN, conduct underground investigations in view of geological disposal. The paper describes the methodology that Belgatom has developed to provide the utilities with appropriate solutions (reracking, dry storage in casks, wet storage in ponds, etc.) and how Belgatom demonstrated also the feasibility of spent fuel conditioning with a view to direct disposal in clay layers. The spent fuel storage facilities in operation in Belgium and designed and built by Belgatom are then briefly presented.


Author(s):  
Yoon Hee Lee ◽  
Jongsoon Song ◽  
Jongkuk Lee ◽  
Kunjai Lee

There are three options for spent fuel management, recycle, once-through and wait and see. The national policy for spent fuel in Korea is “wait and see” and it has to be clearly decided for spent fuel management. The final disposal is the last stage of the fuel cycle and it is essential even though the recycling option will be chosen for spent fuel management policy. And the long-term strategy for spent fuel management considering safety and retrievability is needed. In this study, once-through fuel cycle was focused on for back-end fuel cycle. The international trend for SF management policy and the Korean situation has been investigated. The once-through back-end fuel cycle scenarios has been developed and screened in point of technical and economical aspect. The optimal scenario has been derived by relative comparison and the long-term SF management strategy has been proposed which satisfies both domestic conditions and international trends.


Author(s):  
A. I. Sobolev ◽  
I. V. Syreyshchikov

Analysis of the results of the activity of the State Atomic Energy Corporation "Rosatom" and the Federal Service for Ecological, Technological and Nuclear Supervision for preparing the Russian Federation reports at meetings of the contracting parties to fulfil the obligations arising from the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was performed.The main content of the report refers to the fourth national report of the Russian Federation submitted to the IAEA in May 2015. The main results of the activity for the formation of a unified state system for RW management were considered. Analysis of the questions of the Member States of the Joint Convention to the content of the national report was performed. A review of the activities of the FSUE "RosRAO" in terms of solving the basic problems for the safe management of radioactive waste was presented.


Author(s):  
David Claxton

The BNFL Group of Companies owns and operates a number of nuclear licensed sites worldwide. These cover fuel manufacture and reactor services, power reactors, spent fuel management, and nuclear decommissioning and clean-up. To implement its environmental policy, BNFL needs to have tools and techniques to permit it to respond appropriately to Environmental Trigger Events (ETEs). Similarly, BNFL needs to provide assurance that it is able to manage contaminated land in the short to medium term (prior to site closure) — although such tools/techniques could also be used afterward. To meet this challenge, BNFL has developed the Environmental Response Handbook (ERH), with the main themes of: • Global considerations for remediation on an operational site; • Detailed consideration of the application of remediation to the current ETE; • A maintained ‘toolkit’ of favoured remediation techniques; and • Case studies and action plans. The history of development of the ERH was presented at the Waste Management ’02 Conference. This paper builds on this previously presented information. It details the structure and operation of the ERH with reference to a case study. The case study is used to demonstrate how the ERH would be applied in practice.


Sign in / Sign up

Export Citation Format

Share Document