scholarly journals Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

2009 ◽  
Author(s):  
Jeffrey L Lacy
2018 ◽  
Vol 48 ◽  
pp. 1860121 ◽  
Author(s):  
Zhiwen Wen ◽  
Huirong Qi

The re-designed two-dimensional, multi-wire proportional chamber (MWPC) detector based on the [Formula: see text]He operation gas has been developed for the multifunctional reflection spectrum detection requirements in China Spallation Neutron Source (CSNS), which is under construction in Guangdong province, China. This efficient thermal neutron detector with large area (200 mm [Formula: see text] 200 mm active area), two-dimensional position sensitive (<2 mm of position resolution), high detection efficiency (>65% in the wavelength of 1.8Å) and good n/[Formula: see text] discrimination would meet some requirements in CSNS The neutron detector consists of a MWPC detector and a high-pressure gas vessel. The wire readout structures of the detector and the gas purity device have been optimized based on previous design and testing. The re-designed MWPC detector with an absorber thickness of 10 mm and 8.5 atm operating gas mixture of [Formula: see text]He and C[Formula: see text]H[Formula: see text] was constructed. Using the non-return valve manufactured by Swagelok, the gas purity device was developed to clean the water and remove gas impurities. The effective cycle time can be up to 50 min per sequence. The performance of the position resolution and the two-dimensional imaging accuracy by the traditional center of gravity readout method was studied with an X-ray radiation source and the neutron source. At the end of this year, the detector will be mounted at CSNS and studied using the neutron source.


2005 ◽  
Vol 52 (1) ◽  
pp. 473-477 ◽  
Author(s):  
Q.Y. Hu ◽  
Y.L. Ye ◽  
Z.H. Li ◽  
X.Q. Li ◽  
D.X. Jiang ◽  
...  

2010 ◽  
Vol 43 (3) ◽  
pp. 570-577 ◽  
Author(s):  
L. Coates ◽  
A. D. Stoica ◽  
C. Hoffmann ◽  
J. Richards ◽  
R. Cooper

The macromolecular neutron diffractometer MaNDi is currently under construction at the first target station of the Spallation Neutron Source at Oak Ridge National Laboratory. This instrument will collect neutron diffraction data from small single crystals (0.1–1 mm3) with lattice constants between 100 and 300 Å, as well as data from less well ordered systems such as fibers. A focusing neutron guide has been designed to filter the high-energy neutron component of the spectrum and to provide a narrow beam with a wide spectral window and angular divergence almost insensitive to neutron wavelength. The system includes a final interchangeable section of neutron guide and two slits, which enable tuning of the horizontal and vertical beam divergence between 0.12 and 0.80° (full width at half-maximum) at the sample position. This allows the trading of intensity for resolution, depending on the scientific requirements. Efforts to enhance and develop suitable high-resolution neutron detectors at an affordable price are also discussed. Finally, the parameters of the neutron guide and detectors were used to simulate diffraction from a large unit cell.


2018 ◽  
Vol 67 (7) ◽  
pp. 072901
Author(s):  
Wen Zhi-Wen ◽  
Qi Hui-Rong ◽  
Zhang Yu-Lian ◽  
Wang Hai-Yun ◽  
Liu Ling ◽  
...  

1987 ◽  
Vol 26 (Part 1, No. 7) ◽  
pp. 1164-1169 ◽  
Author(s):  
Noboru Watanabe ◽  
Hajime Asano ◽  
Hirokatsu Iwasa ◽  
Setsuo Satoh ◽  
Hideaki Murata ◽  
...  

2009 ◽  
Vol 56 (4) ◽  
pp. 2493-2498 ◽  
Author(s):  
Vivek V. Nagarkar ◽  
Dayakar Penumadu ◽  
Irina Shestakova ◽  
Samta C. Thacker ◽  
Stuart R. Miller ◽  
...  

Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


Sign in / Sign up

Export Citation Format

Share Document