Study of Tip-Surface Interactions in Scanning Tunneling Microscopy (STM) by Reflection Electron Microscopy (REM)

Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.

2017 ◽  
Vol 870 ◽  
pp. 126-131
Author(s):  
Zhong Yuan Sun ◽  
Alexander Schuler ◽  
Tino Hausotte

The demands for precision measurement of three dimensional micro-and nanogeometries over a large area have rapidly increased during the last few years. To meet such requirements, many different nanometre resolving 3D capable probing sensors and corresponding 3D positioning systems to operate the sensors for 3D measurements have been developed. The mechanical contact-free, electrical work piece probing based on the scanning tunneling microscopy principle offers new possibilities for 3D micro coordinate measurements as well as for nanometre resolved topography measurements in micro-and nanometrology. This paper introduces an updated version of this probing sensor system extended with a 3D movable piezo scanner to directly detect its probing direction. With the magnitude and the direction of the contact vector forwarded to the position control of the nanopositioning and nanomeasuring machine NMM-1 all of the 3D measurement commands of NMM-1 can be utilized, allowing 3D surface scans and especially 3D free-form surface scans.


1994 ◽  
Vol 75 (3) ◽  
pp. 1390-1395 ◽  
Author(s):  
Junjue Yan ◽  
Zhigang Li ◽  
Chuanyong Bai ◽  
W. S. Yang ◽  
Yugang Wang ◽  
...  

Author(s):  
D. R. Denley

Scanning tunneling microscopy (STM) has recently been introduced as a promising tool for analyzing surface atomic structure. We have used STM for its extremely high resolution (especially the direction normal to surfaces) and its ability for imaging in ambient atmosphere. We have examined surfaces of metals, semiconductors, and molecules deposited on these materials to achieve atomic resolution in favorable cases.When the high resolution capability is coupled with digital data acquisition, it is simple to get quantitative information on surface texture. This is illustrated for the measurement of surface roughness of evaporated gold films as a function of deposition temperature and annealing time in Figure 1. These results show a clear trend for which the roughness, as well as the experimental deviance of the roughness is found to be minimal for evaporation at 300°C. It is also possible to contrast different measures of roughness.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


1997 ◽  
Vol 04 (06) ◽  
pp. 1167-1171 ◽  
Author(s):  
CH. AMMER ◽  
K. MEINEL ◽  
H. WOLTER ◽  
A. BECKMANN ◽  
H. NEDDERMEYER

Recent scanning tunneling microscopy (STM) observations revealed different layer structures in the heteroepitaxial Cu/Ru(0001) system with increasing film thickness attributed to various stages of strain relaxation. High-resolution low-energy electron diffraction (HRLEED) analysis permits one to derive more exactly both lattice periodicities and lattice rotations. Furthermore, the representative character of local STM results can be proved. However, STM measurements are needed to identify and to assign the satellite spots to coexistent different superstructures which are superposed incoherently in the diffraction pattern. Generally, the integral LEED results confirm the crystallographic data obtained by STM in a local scale.


Sign in / Sign up

Export Citation Format

Share Document