QSCR Analysis of Cytotoxicity of 6-Fluoro-3-(4H-1,2,4-triazol-3-yl)quinolin-4(1H)-ones on Chinese Hamster Ovary Cell Line: Design of REPUBLIC1986

2021 ◽  
Vol 28 ◽  
Author(s):  
Shikha Joon ◽  
Rajeev K. Singla ◽  
Bairong Shen ◽  
Mohammad Amjad Kamal

Background: 6-Fluoro-3-(4H-1,2,4-triazol-3-yl)quinolin-4(1H)-ones are promising antitumor agents with enormous data on their profound cytotoxic effects on the human cancer cell lines. Objectives: We sought to perform a Quantitative structure cytotoxicity relationship (QSCR) analysis of a series of previously reported fluoroquinolone analogues using computer-assisted multiple regression analysis and investigate the cytotoxicity-inducing structural parameters among these congeners. Methods: The dataset was segregated into training and test sets of 6-Fluoro-3-(4H-1,2,4-triazol-3-yl)quinolin-4(1H)-ones by using a random selection method embedded in Vlife MDS 4.6 software and subjected to QSCR analysis. Next, cross-validation of the generated QSCR models was performed along with the external test set prediction. Finally, the data was analyzed, and contour plots were developed to deduce the cytotoxicity-inducing structural parameters among these congeners using Minitab® software. Results: The validated QSCR model exhibited a statistically significant predictive value of 92.27 percent. Our QSCR model revealed a direct proportionality between hydrogen counts and cytotoxicity and exclusion of sulphur and nitrogen with lesser crowding of cyclopropyl rings in future potential 6-Fluoro-3-(4H-1,2,4-triazol-3-yl)quinolin-4(1H)-one analogues. Based on the QSCR model predictions and contour plot analysis, the de novo REPUBLIC1986 molecule provided the best hit with predicted IC50 (µM) of 0.45 against CHO cell line and is amenable to salt formation crucial for anti-ovarian cancer activity. Conclusion: These findings suggest the relevancy of the developed QSCR model in designing novel, potent, and safer anti-cancer drugs with 6-Fluoro-3-(4H-1,2,4-triazol-3-yl)quinolin-4(1H)-ones as seed compounds.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Victoria I. Turilova ◽  
Tatyana S. Goryachaya ◽  
Tatiana K. Yakovleva

Abstract Background Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. Results Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal—20 in each cell line—DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. Conclusion DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.


1985 ◽  
Vol 5 (12) ◽  
pp. 3525-3531
Author(s):  
J K Griffith

Recombinant DNA probes complementary to Chinese hamster metallothionein (MT)-1 and MT-2 mRNAs were used to compare MT gene copy numbers, zinc-induced MT mRNA levels, and uninduced MT mRNA levels in cadmium-resistant (Cdr) Chinese hamster ovary cell lines. Quantitative hybridization analyses determined that the MT-1 and MT-2 genes are each present at approximately single-copy levels in the genome of cell line Cdr2C10 and are coordinately amplified approximately 7, 3, and 12 times over the Cdr2C10 value in the genomes of cell lines Cdr20F4, Cdr30F9, and Cdr200T1, respectively. The maximum zinc-induced MT-1 mRNA concentrations in cell lines Cdr20F4, Cdr30F9, and Cdr200T1 were equal to 1, 3, and 15 times that measured in Cdr2C10, respectively. Similarly, the maximum zinc-induced MT-2 mRNA concentrations were equal to 1, 3, and 14 times that measured in Cdr2C10, respectively, and in each instance they were 90 to 150 times greater than their respective concentrations in uninduced cells. Thus, relative MT gene numbers are closely correlated with both zinc-induced and uninduced MT mRNA levels in Cdr2C10, Cdr30F9, and Cdr200T1, but not in Cdr20F4. Each of the latter two lines possesses structurally altered chromosomes whose breakpoints are near the MT locus. Nonetheless, the ratio of the levels of MT-1 to MT-2 mRNAs was constant in each of the four cell lines, including Cdr20F4. These results demonstrate that MT-1 and MT-2 mRNAs are induced coordinately in each Cdr cell line. Therefore, the coordination of the induction of MT-1 and MT-2 mRNA is independent of MT gene amplification, MT gene rearrangement, and the relative inducibilities of amplified MT genes. However, MT mRNA and protein levels each indicate that MT-1 and MT-2 expression is non-coordinate in uninduced cells. Thus, regulation of MT expression may involve two different mechanisms which are differentially operative in induced and uninduced cells.


1990 ◽  
Vol 10 (9) ◽  
pp. 4612-4622
Author(s):  
P J Beck ◽  
P Orlean ◽  
C Albright ◽  
P W Robbins ◽  
M J Gething ◽  
...  

The Saccharomyces cerevisiae DPM1 gene product, dolichol-phosphate-mannose (Dol-P-Man) synthase, is involved in the coupled processes of synthesis and membrane translocation of Dol-P-Man. Dol-P-Man is the lipid-linked sugar donor of the last four mannose residues that are added to the core oligosaccharide transferred to protein during N-linked glycosylation in the endoplasmic reticulum. We present evidence that the S. cerevisiae gene DPM1, when stably transfected into a mutant Chinese hamster ovary cell line, B4-2-1, is able to correct the glycosylation defect of the cells. Evidence for complementation includes (i) fluorescence-activated cell sorter analysis of differential lectin binding to cell surface glycoproteins, (ii) restoration of Dol-P-Man synthase enzymatic activity in crude cell lysates, (iii) isolation and high-performance liquid chromatography fractionation of the lipid-linked oligosaccharides synthesized in the transfected and control cell lines, and (iv) the restoration of endoglycosidase H sensitivity to the oligosaccharides transferred to a specific glycoprotein synthesized in the DPM1 CHO transfectants. Indirect immunofluorescence with a primary antibody directed against the DPM1 protein shows a reticular staining pattern of protein localization in transfected hamster and monkey cell lines.


1990 ◽  
Vol 10 (4) ◽  
pp. 1338-1346
Author(s):  
C Ma ◽  
T H Leu ◽  
J L Hamlin

We recently showed that replication initiates in the early S period at two closely spaced zones in the 240-kilobase (kb) dihydrofolate reductase (DHFR) amplicon of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Both of these initiation loci (ori-beta and ori-gamma) have previously been cloned in a recombinant cosmid. In this study, we identified a third early-firing initiation locus (ori-alpha) in the much larger DHFR amplicon of the independently isolated methotrexate-resistant Chinese hamster cell line DC3F-A3/4K (A3/4K). We describe the molecular cloning of this newly identified locus and demonstrate by chromosomal walking that ori-alpha lies approximately 240 kb upstream from ori-beta. Using overlapping cosmid clones for more than 450 kb of DNA sequence from this region of the DHFR domain, we have monitored the replication pattern of the amplicons in synchronized A3/4K cells. These studies suggest that ori-alpha, ori-beta, and ori-gamma are the only early-firing initiation sites in this 450-kb sequence. In addition, we have been able to roughly localize the termini between ori-alpha and ori-beta and between ori-alpha and the next origin in the 5' direction. Thus, we have now isolated the equivalent of three early-firing replicons (including their origins) from a well-characterized chromosomal domain. With these tools, it should be possible to determine those properties that are shared by the origins and termini of different replicons and which are therefore likely to be functionally significant.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Juliana Branco Novo ◽  
Ligia Morganti ◽  
Ana Maria Moro ◽  
Adriana Franco Paes Leme ◽  
Solange Maria de Toledo Serrano ◽  
...  

Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher’s patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.


Author(s):  
Jeffrey T. Mcgrew ◽  
Cheryl L. Richards ◽  
Pauline Smidt ◽  
Bradley Dell ◽  
Virginia Price

Sign in / Sign up

Export Citation Format

Share Document