Drug Carrier Systems Based on Cyclodextrin Supramolecular Assemblies and Polymers: Present and Perspectives

2017 ◽  
Vol 23 (3) ◽  
pp. 411-432 ◽  
Author(s):  
Gustavo Gonzalez-Gaitano ◽  
Jose Ramon Isasi ◽  
Itziar Velaz ◽  
Arantza Zornoza

The pharmaceutical applications of cyclodextrins (CDs), cyclic oligosaccharides capable of including hydrophobic molecules inside their cavities, have been known for decades. Besides the solubilising and encapsulating abilities of natural and modified CDs due to the formation of inclusion complexes, there is an increasing interest in organized macrostructures based on CDs as potential drug delivery devices and gene carrier systems. The present review discusses first the case of drug carriers based on monomeric modified CDs (amphiphilic and CD core-star polymers), in which self-assembly plays a major role. Polyrotaxanes, i.e., CDs threaded onto a polymer chain, are then reviewed in relation to their pharmaceutical applications. Finally, covalently linked CDs, either by grafting or crosslinking, are analyzed, including more complex structures formed by assembling CDcontaining networks or chains. We have tried along this review to cover the most recent developments on these structures for drug delivery in a “beyond the cyclodextrin” approach. The review will be helpful, both for readers who want to be introduced into the world of these remarkable structures, or for specialists who are doing research in this field.

2005 ◽  
Vol 28 (11) ◽  
pp. 1163-1171 ◽  
Author(s):  
C. Mayer

Dispersed polymer nanocapsules can serve as nano-sized drug carriers to achieve controlled release as well as efficient drug targeting. The dispersion stability and the primary physiological response are mainly determined by the type of the surfactant and the nature of the outer coating. Their release and degradation properties largely depend on the composition and the structure of the capsule walls. Another important criterion is the capsule size, where an optimum is generally seen for radii ranging between 100 and 500 nm. Nanocapsules can be prepared by four principally different approaches: interfacial polymerization, interfacial precipitation, interfacial deposition, and self assembly procedures. All these procedures offer their individual advantages and disadvantages when it comes to the design of optimized drug carrier systems. The most important capsule parameters such as capsule radius distribution, the capsule surface, the thickness and the permeability of the capsule membrane and its thermal or chemical decomposition, are discussed and examples are shown. In combination with efficient preparation procedures, nanocapsule dispersions allow for new and promising approaches in many kinds of pharmaceutical therapies.


2018 ◽  
Vol 24 (8) ◽  
pp. 911-925 ◽  
Author(s):  
Ling Gui Ning ◽  
En-Tang Kang ◽  
Yun Bing Wang ◽  
Xue Feng Hu ◽  
Li Qun Xu

Traditional use of antibiotics through injection or oral ingestion has many disadvantages, such as detrimental side effects in the host, less effectiveness, high and repeated doses, and development of drug resistance. For prevention and treatment of implant-associated infections, the continuous local delivery of antibiotics is required. Thus, there is a strong demand for the development of drug carrier systems to control the release of antibiotics in a moderate manner over an appropriate timescale. This review summarizes the carrier platforms used for the loading of antibiotics, and highlights their drug release behaviors as well as in vitro and in vivo antibacterial properties.


2019 ◽  
Vol 16 (8) ◽  
pp. 882-891
Author(s):  
Yongjia Liu ◽  
Leilei Shi ◽  
Bangshang Zhu ◽  
Yue Su ◽  
Hui Li ◽  
...  

Background: The drug-drug self-assembly was considered as a simple and efficient approach to prepare high drug loading nano-drug carriers and present new opportunities for cancer therapeutics. The strategy of PTX amphiphiles preparation would be a possible way to solve the poor water solubility of PTX. Methods: The PTX-YSL conjugate were synthesized and characterized. The PTX-YSL nanocarriers was prepared by a simple self-assembly method. In vitro cell studies and pharmacokinetic studies were evaluated for their in vitro anti-tumor activities and blood retention time. Results: The structures of PTX-YSL conjugate were confirmed by LC-MS, 1H NMR and FTIR. The size and morphology of the PTX-YSL self-assembled nanocarriers were observed with TEM and DLS. PTX-YSL nanocarriers could facilitate cellular uptake and had low cytotoxicity. PTX-YSL nanocarriers have longer blood retention for enhancing accumulation in the tumor tissues via EPR effect. Conclusion: This drug delivery system formed by PTX-YSL conjugates constitutes a promising and effective drug carrier in cancer therapy.


2019 ◽  
Vol 7 (18) ◽  
pp. 3018-3025 ◽  
Author(s):  
Uwe Wollina ◽  
Michael Tirant ◽  
Aleksandra Vojvodic ◽  
Torello Lotti

Topical treatment is the cornerstone for the management of mild to moderate psoriasis. Despite efforts in drug development, patient's satisfaction with the available topical treatments is limited. A strategy to improve safety, efficacy and comfort of topical treatment provides the development of new drug delivery and drug carrier systems. This review provides an overview of recent advances in this field with a focus on psoriasis. Laser-assisted drug delivery, foam formulations, nanoparticles, ethosomes, and niomes are considered. Hopefully, these new developments will improve topical drug therapy and patient satisfaction.


2019 ◽  
Vol 16 (3) ◽  
pp. 258-265
Author(s):  
Kei Takahashi ◽  
Tomomi Masuda ◽  
Mitsunori Harada ◽  
Tadashi Inoue ◽  
Shinsuke Nakamura ◽  
...  

Objective: This study aimed to examine whether DC101 (anti-VEGFR2 antibody)- modified micelles have applications as novel drug delivery devices, which allow small molecule antiangiogenic agents to deliver to angiogenic sites on a murine laser-induced choroidal neovascularization (CNV) model. Materials and Method: CNV was induced by photocoagulation on the unilateral eye of each mouse under anesthesia. Immediately after laser coagulation, E7974-loaded DC101-modified micelles and motesanib-loaded DC101-modified micelles were intravitreally administrated. Two weeks after photocoagulation, CNV was visualized using fluorescein-conjugated dextran (MW=2,000 kDa), and the CNV area was measured in retinal pigment epithelium (RPE)-choroidal flat mounts. Results: Intravitreal administration of both DC101-modified micelles loaded with E7974 at 2 µM and motesanib at 2 µM significantly reduced CNV area in the murine laser-induced CNV model at a clearly lower concentration than the effective dose of each agent. Conclusion: These results suggest that DC101-modified micelle might be effective drug carrier system for treating CNV and other ocular angiogenic diseases.


Sign in / Sign up

Export Citation Format

Share Document