Metabolic profile of dendrobine in rats determined by ultra-high performance liquid chromatography/Quadrupole time-of-flight mass spectrometry

Author(s):  
Jun-qi Bai ◽  
Qian-xiang Guo ◽  
Jing Zhang ◽  
Juan Huang ◽  
Wen Xu ◽  
...  

Aims & Objective: Dendrobine is a major alkaloid present mainly in dendrobium nobile Lindl. It has been reported to have analgesic, antipyretic, lower heart rate and blood pressure and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. Methods: In this study, the in vivo metabolite profiling of dendrobine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilotTM software with mass defect filter (MDF) technique. These predicted metabolites were further analyzed by MS2 spectra, and compared with the detailed fragmentation pathway of the dendrobine standard and literature data. Results: total of 59 metabolites were identified for the first time in rat plasma and urine after oral administration of dendrobine. Demethylated, dehydrogenated, hydroxylated, ketonizated and glucuronide were the major metabolic pathways. Conclusions: This research provides scientific and reliable support for full understanding of the metabolic fate of dendrobine in vivo.

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 585 ◽  
Author(s):  
Aihua Huang ◽  
Yuguang Chi ◽  
Jiawei Liu ◽  
Mincun Wang ◽  
Jialiang Qin ◽  
...  

Zanthoxylum nitidum (Roxb.) DC (Rutaceae), called as “liangmianzhen” in China, is well known for its anti-inflammation and analgesic effect. Alkaloids are its main active constituents. However, little has been known about the absorption of main alkaloids in vivo. In this study, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was employed for identification of absorbed alkaloids in rats after oral administration of Z. nitidum decoction. By analyzing the fragmentation patterns, a total of nineteen alkaloids were exactly or tentatively identified in rat plasma after treatment, of which magnoflorine, α-allocryptopine, and skimmianine are dominant. Moreover, a high performance liquid chromatography coupled mass spectrometry method was developed for simultaneous quantification of magnoflorine, α-allocryptopine, and skimmianine, and successfully applied to pharmacokinetic study in rats after oral administration of Z. nitidum decoction. The research would contribute to comprehensive understanding of the material basis and function mechanism of Z. nitidum decoction.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2113 ◽  
Author(s):  
Chao Hong ◽  
Ping Yang ◽  
Shuping Li ◽  
Yizhen Guo ◽  
Dan Wang ◽  
...  

Background: Ginsenoside Rg5 has been proved to have a wide range of pharmacological activities. However, the in vitro and in vivo metabolism pathways of ginsenosides are still unclear, which impedes the understanding of their in vivo fate. In this paper, the possible metabolic process of Rg5 was studied and the metabolites are identified. Methods: Samples from rat liver microsomes (RLMs) in vitro and from rat urine, plasma and feces in vivo were collected for analysis after oral administration of Rg5. A rapid analysis technique using ultra-performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF-MS) was applied for detecting metabolites of Rg5 both in vitro and in vivo. Results: A feasible metabolic pathway was proposed and described for ginsenoside Rg5. A total of 17 metabolic products were detected in biological samples, including the RLMs (four), rat urine (two), feces (13) and plasma (four). Fifteen of them have never been reported before. Oxidation, deglycosylation, deoxidation, glucuronidation, demethylation and dehydration were found to be the major metabolic reactions of Rg5. Conclusions: The present study utilized a reliable and quick analytical tool to explore the metabolism of Rg5 in rats and provided significant insights into the understanding of the metabolic pathways of Rg5 in vitro and in vivo. The results could be used to not only evaluate the efficacy and safety of Rg5, but also identify potential active drug candidates from the metabolites.


Sign in / Sign up

Export Citation Format

Share Document