A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures

2020 ◽  
Vol 20 (6) ◽  
pp. 442-451
Author(s):  
Chaokun Yan ◽  
Luping Feng ◽  
Wenxiu Wang ◽  
Jianlin Wang ◽  
Ge Zhang ◽  
...  

Background: Drug repositioning refers to discovering new indications for the existing drugs, which can improve the efficiency of drug research and development. Methods: In this work, a novel drug repositioning approach based on integrative multiple similarity measure, called DR_IMSM, is proposed. The process of integrative similarity measure contains three steps. First, a heterogeneous network can be constructed based on known drug-disease association, shared entities information for drug pairwise and diseases pairwise. Second, a deep learning method, DeepWalk, is used to capture the topology similarity for drug and disease. Third, a similarity integration and adjusting process is further conducted to obtain more comprehensive drug and disease similarity measure, respectively. Results: On this basis, a Bi-random walk algorithm is implemented in the constructed heterogeneous network to rank diseases for each drug. Compared with other approaches, the proposed DR_IMSM can achieve superior performance in terms of AUC on the gold standard datasets. Case studies further confirm the practical significance of DR_IMSM.

2016 ◽  
Vol 32 (17) ◽  
pp. 2664-2671 ◽  
Author(s):  
Huimin Luo ◽  
Jianxin Wang ◽  
Min Li ◽  
Junwei Luo ◽  
Xiaoqing Peng ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiujuan Lei ◽  
Wenxiang Zhang

The circular RNAs (circRNAs) have significant effects on a variety of biological processes, the dysfunction of which is closely related to the emergence and development of diseases. Therefore, identification of circRNA-disease associations will contribute to analysing the pathogenesis of diseases. Here, we present a computational model called BRWSP to predict circRNA-disease associations, which searches paths on a multiple heterogeneous network based on biased random walk. Firstly, BRWSP constructs a multiple heterogeneous network by using circRNAs, diseases, and genes. Then, the biased random walk algorithm runs on the multiple heterogeneous network to search paths between circRNAs and diseases. Finally, the performance of BRWSP is significantly better than the state-of-the-art algorithms. Furthermore, BRWSP further contributes to the discovery of novel circRNA-disease associations.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Bailong Liu ◽  
Xiaoyan Zhu ◽  
Lei Zhang ◽  
Zhizheng Liang ◽  
Zhengwei Li

Abstract Background Cumulative evidence from biological experiments has confirmed that miRNAs have significant roles to diagnose and treat complex diseases. However, traditional medical experiments have limitations in time-consuming and high cost so that they fail to find the unconfirmed miRNA and disease interactions. Thus, discovering potential miRNA-disease associations will make a contribution to the decrease of the pathogenesis of diseases and benefit disease therapy. Although, existing methods using different computational algorithms have favorable performances to search for the potential miRNA-disease interactions. We still need to do some work to improve experimental results. Results We present a novel combined embedding model to predict MiRNA-disease associations (CEMDA) in this article. The combined embedding information of miRNA and disease is composed of pair embedding and node embedding. Compared with the previous heterogeneous network methods that are merely node-centric to simply compute the similarity of miRNA and disease, our method fuses pair embedding to pay more attention to capturing the features behind the relative information, which models the fine-grained pairwise relationship better than the previous case when each node only has a single embedding. First, we construct the heterogeneous network from supported miRNA-disease pairs, disease semantic similarity and miRNA functional similarity. Given by the above heterogeneous network, we find all the associated context paths of each confirmed miRNA and disease. Meta-paths are linked by nodes and then input to the gate recurrent unit (GRU) to directly learn more accurate similarity measures between miRNA and disease. Here, the multi-head attention mechanism is used to weight the hidden state of each meta-path, and the similarity information transmission mechanism in a meta-path of miRNA and disease is obtained through multiple network layers. Second, pair embedding of miRNA and disease is fed to the multi-layer perceptron (MLP), which focuses on more important segments in pairwise relationship. Finally, we combine meta-path based node embedding and pair embedding with the cost function to learn and predict miRNA-disease association. The source code and data sets that verify the results of our research are shown at https://github.com/liubailong/CEMDA. Conclusions The performance of CEMDA in the leave-one-out cross validation and fivefold cross validation are 93.16% and 92.03%, respectively. It denotes that compared with other methods, CEMDA accomplishes superior performance. Three cases with lung cancers, breast cancers, prostate cancers and pancreatic cancers show that 48,50,50 and 50 out of the top 50 miRNAs, which are confirmed in HDMM V2.0. Thus, this further identifies the feasibility and effectiveness of our method.


2021 ◽  
Author(s):  
Amin Rezaeipanah

Abstract Online social networks are an integral element of modern societies and significantly influence the formation and consolidation of social relationships. In fact, these networks are multi-layered so that there may be multiple links between a user’ on different social networks. In this paper, the link prediction problem for the same user in a two-layer social network is examined, where we consider Twitter and Foursquare networks. Here, information related to the two-layer communication is used to predict links in the Foursquare network. Link prediction aims to discover spurious links or predict the emergence of future links from the current network structure. There are many algorithms for link prediction in unweighted networks, however only a few have been developed for weighted networks. Based on the extraction of topological features from the network structure and the use of reliable paths between users, we developed a novel similarity measure for link prediction. Reliable paths have been proposed to develop unweight local similarity measures to weighted measures. Using these measures, both the existence of links and their weight can be predicted. Empirical analysis shows that the proposed similarity measure achieves superior performance to existing approaches and can more accurately predict future relationships. In addition, the proposed method has better results compared to single-layer networks. Experiments show that the proposed similarity measure has an advantage precision of 1.8% over the Katz and FriendLink measures.


Author(s):  
B. Mathura Bai ◽  
N. Mangathayaru ◽  
B. Padmaja Rani ◽  
Shadi Aljawarneh

: Missing attribute values in medical datasets are one of the most common problems faced when mining medical datasets. Estimation of missing values is a major challenging task in pre-processing of datasets. Any wrong estimate of missing attribute values can lead to inefficient and improper classification thus resulting in lower classifier accuracies. Similarity measures play a key role during the imputation process. The use of an appropriate and better similarity measure can help to achieve better imputation and improved classification accuracies. This paper proposes a novel imputation measure for finding similarity between missing and non-missing instances in medical datasets. Experiments are carried by applying both the proposed imputation technique and popular benchmark existing imputation techniques. Classification is carried using KNN, J48, SMO and RBFN classifiers. Experiment analysis proved that after imputation of medical records using proposed imputation technique, the resulting classification accuracies reported by the classifiers KNN, J48 and SMO have improved when compared to other existing benchmark imputation techniques.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ali A. Amer ◽  
Hassan I. Abdalla

Abstract Similarity measures have long been utilized in information retrieval and machine learning domains for multi-purposes including text retrieval, text clustering, text summarization, plagiarism detection, and several other text-processing applications. However, the problem with these measures is that, until recently, there has never been one single measure recorded to be highly effective and efficient at the same time. Thus, the quest for an efficient and effective similarity measure is still an open-ended challenge. This study, in consequence, introduces a new highly-effective and time-efficient similarity measure for text clustering and classification. Furthermore, the study aims to provide a comprehensive scrutinization for seven of the most widely used similarity measures, mainly concerning their effectiveness and efficiency. Using the K-nearest neighbor algorithm (KNN) for classification, the K-means algorithm for clustering, and the bag of word (BoW) model for feature selection, all similarity measures are carefully examined in detail. The experimental evaluation has been made on two of the most popular datasets, namely, Reuters-21 and Web-KB. The obtained results confirm that the proposed set theory-based similarity measure (STB-SM), as a pre-eminent measure, outweighs all state-of-art measures significantly with regards to both effectiveness and efficiency.


2021 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Jin Zhu ◽  
Dayu Cheng ◽  
Weiwei Zhang ◽  
Ci Song ◽  
Jie Chen ◽  
...  

People spend more than 80% of their time in indoor spaces, such as shopping malls and office buildings. Indoor trajectories collected by indoor positioning devices, such as WiFi and Bluetooth devices, can reflect human movement behaviors in indoor spaces. Insightful indoor movement patterns can be discovered from indoor trajectories using various clustering methods. These methods are based on a measure that reflects the degree of similarity between indoor trajectories. Researchers have proposed many trajectory similarity measures. However, existing trajectory similarity measures ignore the indoor movement constraints imposed by the indoor space and the characteristics of indoor positioning sensors, which leads to an inaccurate measure of indoor trajectory similarity. Additionally, most of these works focus on the spatial and temporal dimensions of trajectories and pay less attention to indoor semantic information. Integrating indoor semantic information such as the indoor point of interest into the indoor trajectory similarity measurement is beneficial to discovering pedestrians having similar intentions. In this paper, we propose an accurate and reasonable indoor trajectory similarity measure called the indoor semantic trajectory similarity measure (ISTSM), which considers the features of indoor trajectories and indoor semantic information simultaneously. The ISTSM is modified from the edit distance that is a measure of the distance between string sequences. The key component of the ISTSM is an indoor navigation graph that is transformed from an indoor floor plan representing the indoor space for computing accurate indoor walking distances. The indoor walking distances and indoor semantic information are fused into the edit distance seamlessly. The ISTSM is evaluated using a synthetic dataset and real dataset for a shopping mall. The experiment with the synthetic dataset reveals that the ISTSM is more accurate and reasonable than three other popular trajectory similarities, namely the longest common subsequence (LCSS), edit distance on real sequence (EDR), and the multidimensional similarity measure (MSM). The case study of a shopping mall shows that the ISTSM effectively reveals customer movement patterns of indoor customers.


Sign in / Sign up

Export Citation Format

Share Document