Statistical Study on the Growth of Chlorella pyrenoidosa Using the Response Surface Methodology

2017 ◽  
Vol 4 (1) ◽  
pp. 43-59 ◽  
Author(s):  
Chellamboli Chelladurai ◽  
Muthiah Perumalsamy
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Selvakumar Thiruvenkadam ◽  
Shamsul Izhar ◽  
Yoshida Hiroyuki ◽  
Razif Harun

Subcritical water extraction (SCW) was used to extract oil from Chlorella pyrenoidosa. The operational factors such as reaction temperature, reaction time, and biomass loading influence the oil yield during the extraction process. In this study, response surface methodology was employed to identify the desired extraction conditions for maximum oil yield. Experiments were carried out in batch reactors as per central composite design with three independent factors including reaction temperature (170, 220, 270, 320, and 370°C), reaction time (1, 5, 10, 15, and 20 min), and biomass loading (1, 3, 5, 10, and 15%). A maximum oil yield of 12.89 wt.% was obtained at 320°C and 15 min, with 3% biomass loading. Sequential model tests showed the good fit of experimental data to the second-order quadratic model. This study opens the great potential of SCW to extract algal oil for use in algal biofuel production.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Si-Jun Park ◽  
Seong-Moon Seo ◽  
Young-Soo Yoo ◽  
Hi-Won Jeong ◽  
HeeJin Jang

The effects of alloying elements (Co, Cr, Mo, W, Al, Ti, and Ta) on the oxidation resistance of Ni-based superalloys are studied using the Response Surface Methodology (RSM). The statistical analysis showed that Al and Ta generally improve the oxidation resistance of the alloy, whereas Ti and Mo degrade the oxidation resistance. Co, Cr, and W did not alter oxidation rate significantly when examined by the mass gain averaged for all model alloys. However, it is remarkable that the degree of the effects of alloying elements varied with the concentration of other elements. Further, the effect of each element was sometimes found to be reversed for alloy groups specified by the concentration of another element.


2020 ◽  
Author(s):  
Shubhangi Mishra ◽  
Pradeep Kumar Srivast ◽  
Virendra Singh ◽  
Monika Sharma

Abstract The uncontrolled utilization for the textile products is increasing year by year resulting with the elevating wastewater generated from the textile industries, which makes it among the prevalent sources of critical environmental deteoration issue globally. Products obtained from the dyes used are the primary toxic product for aquatic life, they cause aesthetic pollution, eutrophication, perturbation and increase in BOD and COD in aquatic life. Three types of textile wastewaters (Acid Yellow dye, Acid orange dye and Basic pink dye) has been used for wastewater treatment and microalgal (Chlorella pyrenoidosa) biomass production. Nitrogen content in textile wastewaters is very less, hence urea is used as nitrogen source in wastewater. Optimal growth condition (Urea-0.4g/L, wastewater- 40%(v/v)) is developed through Response surface methodology (RSM). The biomass productivity for chlorella sp. is 1.2-1.5 g/L/day in textile wastewaters. The reduction efficiency of COD, Nitrate-N Ammonia-N, Phosphate-P, and Dye(color) removal for Chlorella is 90-95%, 75-85%, 90-98%, 65-74% and 40-65%.After harvesting the Biomass by flocculation method it can be used for biofuel production by in-situ transesterification.


Sign in / Sign up

Export Citation Format

Share Document