Recent Advances in the Synthesis of Bioactive Quinoline-Based 1,2,3-Triazoles via Cu-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (“Click Reaction”)

2017 ◽  
Vol 13 (6) ◽  
pp. 488-503 ◽  
Author(s):  
Vladimir V. Kouznetsov ◽  
Leonor Y. Vargas-Mendez ◽  
Fedor I. Zubkov
2009 ◽  
Vol 13 (03) ◽  
pp. 336-345 ◽  
Author(s):  
Mikhail A. Grin ◽  
Ivan S. Lonin ◽  
Anna A. Lakhina ◽  
Elena S. Ol'shanskaya ◽  
Alexey I. Makarov ◽  
...  

Glucose-, galactose- and lactose-containing photosensitizers based on derivatives of chlorophyll a and bacteriochlorophyll a were synthesized with the use of [3+2] cycloaddition between sugar azides and triple bond derivatives of chlorins and bacteriochlorins. Unlike bacteriochlorin cycloimide, chlorin was detected to form a Cu -complex during the click reaction. An approach to the synthesis of metal-free glycosylated chlorins was developed with the use of "protection" by Zn 2+ cation and subsequent demetalation. It is based on the action of alkynyl chlorin e6 derivative Zn -complex, which is resistant to the substitution by copper cation. Bacteriochlorin p cycloimide conjugate with per-acetylated β-D-lactose was obtained and shown to become water-soluble after unblocking of the lactose hydroxy functions. NMR studies allowed for the elucidation of structure, tautomeric form and conformation of the obtained compounds.


2017 ◽  
Vol 35 (3) ◽  
pp. 317-341 ◽  
Author(s):  
Zhi-hao Huang ◽  
Yan-yan Zhou ◽  
Zi-mu Wang ◽  
Ying Li ◽  
Wei Zhang ◽  
...  

2016 ◽  
Vol 3 (9) ◽  
pp. 160090 ◽  
Author(s):  
Biswadip Banerji ◽  
K. Chandrasekhar ◽  
Sunil Kumar Killi ◽  
Sumit Kumar Pramanik ◽  
Pal Uttam ◽  
...  

‘Click reactions’ are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the ‘click reactions’ can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction.


RSC Advances ◽  
2017 ◽  
Vol 7 (16) ◽  
pp. 9567-9572 ◽  
Author(s):  
Chunxia Wang ◽  
Fan Yang ◽  
Yan Cao ◽  
Xing He ◽  
Yushu Tang ◽  
...  

CuO nanowires can be synthesized by facile thermal oxidation of 3D Cu foam in air, which were found to be effective heterogeneous catalysts for the 1,3-dipolar cycloaddition reactions without using any additional support and bases.


2011 ◽  
Vol 64 (4) ◽  
pp. 433 ◽  
Author(s):  
Ming Chen ◽  
Graeme Moad ◽  
Ezio Rizzardo

It has been found that diazomethane undergoes a facile 1,3‐dipolar cycloaddition with both dithiobenzoate RAFT agents and the dithiobenzoate end‐groups of polymers formed by RAFT polymerization. Thus, 2‐cyanoprop‐2‐yl dithiobenzoate on treatment with diazomethane at room temperature provided a mixture of stereoisomeric 1,3‐dithiolanes in near quantitative (>95%) yield. A low‐molecular‐weight RAFT‐synthesized poly(methyl methacrylate) with dithiobenzoate end‐groups underwent similar reaction as indicated by immediate decolourization and a quantitative doubling of molecular weight. Higher‐molecular‐weight poly(methyl methacrylate)s were also rapidly decolourized by diazomethane and provided a product with a bimodal molecular weight distribution. Under similar conditions, the trithiocarbonate group does not react with diazomethane.


2019 ◽  
Author(s):  
Marie-Claire Giel ◽  
Christopher J. Smedley ◽  
Emily R. R. Mackie ◽  
Taijie Guo ◽  
Jiajia Dong ◽  
...  

The 1,2,3-triazole group is one of the most important connective linkers and functional aromatic heterocycles in modern chemistry. The boom in growth of, in particular, 1,4-disubstituted triazole products since the early 2000’s, can be largely attributed to the birth of click chemistry and the discovery of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Yet the synthesis of relatively simple, albeit important, 1-substituted-1,2,3-triazoles, has been surprisingly more challenging. We report a straightforward and scalable click-protocol for the synthesis of 1-substituted-1,2,3-triazoles from organic azides and the bench stable acetylene-surrogate, ethenesulfonyl fluoride (ESF). The transformation proceeds through a thermal 1,3-dipolar cycloaddition of the azide and ESF to give a sulfonyl fluoride substituted triazoline, that itself spontaneously aromatizes through formal loss of HF/SO<sub>2 </sub>to give the stable triazole products with excellent fidelity. The new click reaction tolerates a wide selection of substrates and proceeds smoothly under metal-free conditions to give the products in excellent yield, and without need for additives or chromatographic purification. Further, under controlled conditions, the 1-substituted-1,2,3-triazole products undergo Michael reaction with a second equivalent of ESF to give the unprecedented 1-substituted triazolium sulfonyl fluoride salts, demonstrating the versatility and orthogonal reactivity of ESF. The importance of this novel method is evidenced through the late-stage modification of several drugs and drug fragments, including the synthesis of a new improved derivative of the famous antibiotic, chloramphenicol.


2017 ◽  
Vol 1 (1) ◽  
pp. 22-34
Author(s):  
Mariana Barbosa ◽  
Cristina Martins ◽  
Paula Gomes

In recent years, there has been a growing demand for novel strategies for biomedical applications. Chitosan is a typical cationic amino-containing polysaccharide that has been widely used due to its unique properties. The grafting modification of chitosan has been explored as an interesting method to develop multifunctional novel chitosan hybrid materials for drug delivery, tissue engineering, and other biomedical applications. Recently, “click” chemistry has been introduced into the synthesis of polymeric materials with well-defined and complex chain architectures. The Huisgen’s 1,3-dipolar cycloaddition reaction between alkynes and azides yielding triazoles is the principal example of a “click” reaction. Bioconjugation, surface modification, and orthogonal functionalization of polymers were successfully performed through this chemoselective reaction. In recent literature interest has been shown in this cycloaddition for the modification of polysaccharides, however, only a few chitosan graft copolymers have been synthesized by this technique.


Sign in / Sign up

Export Citation Format

Share Document