similar reaction
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 85)

H-INDEX

23
(FIVE YEARS 4)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 498
Author(s):  
Ana María Moreno de los Moreno de los Reyes ◽  
José Antonio Suárez-Navarro ◽  
María del Mar Alonso ◽  
Catalina Gascó ◽  
Isabel Sobrados ◽  
...  

The use of more eco-efficient cements in concretes is one of the keys to ensuring construction industry sustainability. Such eco-efficient binders often contain large but variable proportions of industrial waste or by-products in their composition, many of which may be naturally occurring radioactive materials (NORMs). This study explored the application of a new gamma spectrometric method for measuring radionuclide activity in hybrid alkali-activated cements from solid 5 cm cubic specimens rather than powder samples. The research involved assessing the effect of significant variables such as the nature of the alkaline activator, reaction time and curing conditions to relate the microstructures identified to the radiological behavior observed. The findings showed that varying the inputs generated pastes with similar reaction products (C-S-H, C-A-S-H and (N,C)-A-S-H) but different microstructures. The new gamma spectrometric method for measuring radioactivity in solid 5 cm cubic specimens in alkaline pastes was found to be valid. The variables involved in hybrid cement activation were shown to have no impact on specimen radioactive content. The powder samples, however, emanated 222Rn (a descendent of 226Ra), possibly due to the deformation taking place in fly ash structure during alkaline activation. Further research would be required to explain that finding.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 491
Author(s):  
Juan F. Van der Maelen ◽  
Javier Ruiz

DFT theoretical calculations for the Ag2O-induced isomerization process of diaminocarbenes to formamidines, coordinated to Mn(I), have been carried out. The reaction mechanism found involves metalation of an N-H residue of the carbene ligand by the catalyst Ag2O and the formation of a key transition state showing a μ-η2:η2 coordination of the formamidinyl ligand between manganese and silver, which allows a translocation process of Mn(I) and silver(I) ions between the carbene carbon atom and the nitrogen atom, before the formation of the formamidine ligand is completed. Calculations carried out using Cu2O as a catalyst instead of Ag2O show a similar reaction mechanism that is thermodynamically possible, but highly unfavorable kinetically and very unlikely to be observed, which fully agrees with experimental results.


Author(s):  
Matheus Tavares ◽  
Luís Kanda ◽  
Wanderson Giacomin Júnior ◽  
Luiz Ramos ◽  
Luciana Vandenberghe ◽  
...  

This work provides a general insight on lipase-catalyzed synthesis of geranyl acetate through esterification of geraniol with acetic acid. Although this reaction is relatively well known, the replacement of organic solvents by supercritical fluids is fairly recent and the role of CO2 is still not completely understood. Therefore, reactions were performed with Lipozyme® RM IM and Novozym® 435 as biocatalysts, and hexane and CO2 as solvents. For similar reaction conditions, geraniol conversions obtained using hexane were much higher, rather than supercritical CO2 (scCO2, 82.9% versus 12.0% after 4 h). The results obtained indicated that CO2 might help the migration of water from the enzyme surface to reaction bulk and then to the vapor phase. Thus, by increasing the vapor phase extension, the geraniol conversion enhanced to 60.5% after 4 h. Such improvement represents one step forward to comprehend the influence of CO2, a safer and greener solvent as compared to hexane.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1415
Author(s):  
Eike S. Welter ◽  
Sebastian Kött ◽  
Fabian Brandenburg ◽  
Jens Krömer ◽  
Michael Goepel ◽  
...  

While photocatalysis is considered a promising sustainable technology in the field of heterogeneous catalysis as well as biocatalysis, figures of merit (FOM) for comparing catalytic performance, especially between disciplines, are not well established. Here, photocatalytic water splitting was conducted using a semiconductor (NiO/La-NaTaO3) and a bio-photocatalyst (Synechocystis sp. PCC 6803) in the same setup under similar reaction conditions, eliminating the often ill-defined influence of the setup on the FOMs obtained. Comparing the results enables the critical evaluation of existing FOMs and a quantitative comparison of both photocatalytic systems. A single FOM is insufficient to compare the photocatalysts, instead a combination of multiple FOMs (reaction rate, photocatalytic space time yield and a redefined apparent quantum yield) is superior for assessing a variety of photocatalytic systems.


2021 ◽  
Author(s):  
Ionela Bara ◽  
Richard J Binney ◽  
Richard Ramsey

Aesthetic judgments dominate much of daily life by guiding how we evaluate objects, people, and experiences in our environment. One key question that remains unanswered is the extent to which more specialised or largely general cognitive resources support aesthetic judgments. To investigate this question in the context of executive resources, we examined the extent to which a central working memory load produces similar or different reaction time interference on aesthetic compared to non-aesthetic judgments. Across three pre-registered experiments that used Bayesian multi-level modelling approaches (N>100 per experiment), we found clear evidence that a central working memory load produces similar reaction time interference on aesthetic judgments relative to non-aesthetic (motion) judgments. We also showed that this similarity in processing across aesthetic versus non-aesthetic judgments holds across variations in the form of art (people vs landscape; Exps. 1-3), medium type (artwork vs photographs; Exp. 2) and load content (art images vs letters; Exps. 1-3). These findings suggest that across a range of experimental contexts, as well as different processing streams in working memory (e.g., visual vs verbal), aesthetic and motion judgments commonly rely on a domain-general executive system, rather than a system that is more specifically tied to aesthetic judgments. In doing so, these findings shine new light on the cognitive architecture that supports aesthetic judgments, as well as how domain-general executive systems operate more generally in cognition.


2021 ◽  
Author(s):  
Yagmur Mese ◽  
Benay Tuncsoy ◽  
Pınar Ozalp

Abstract The effects of Cu, Zn and their mixture on bioaccumulation and antioxidant enzyme activities of midgut and fat body of Galleria mellonella larvae were investigated. The application of metals as a mixture showed a synergistic effect and the accumulation levels were increased in both tissues. Zn accumulation increased in midgut and fat body of G. mellonella larvae exposed to metal singly. On the other hand, Cu accumulation increased in midgut, while a decrease was observed in fat body exposed to Cu singly. Moreover, it was determined that oxidative stress was occured in midgut and fat body of G. mellonella larvae with significant decreases and increases in antioxidant and detoxification enzyme activities when fed singly and in mixture with different concentrations of Cu and Zn. Understanding the reactions of G. mellonella, which is a model organism showing immune system responses similar to vertebrates and bioindicator species, to metals by detoxification systems, which is an important parameter in insect physiology, is thought to contribute to future toxicological, genotoxic, physiological and ecotoxicological studies. G. mellonella larvae, which were used as a model organism, shows a similar reaction to mammals.


2021 ◽  
Vol 11 (20) ◽  
pp. 9719
Author(s):  
Kai C. Betz ◽  
Anna Westhues ◽  
Werner Pauer

The radical polymerisation of acrylic acid is largely concentration dependent and affected by the type of the surrounding solvent. This work investigates reaction rate constants, the activation energy, heat flux and the molecular weight in the industrially relevant synthesis of low molecular mass acrylic acid polymers in 2‑propanol. The polymerisations were carried out isothermally in an RC1e calorimeter with inline Raman spectroscopy for monomer concentration monitoring. For a non-neutralised acrylic acid in isopropanol (150 g/L), a monomer reaction order of 1.73 ± 0.15, an activation energy of 58.6 ± 0.8 kJ/mol (0.5 mol% AIBN) and 88.5 ± 1.5 kJ/mol (1.0 mol% AIBN), and a reaction enthalpy of 66.4 ± 4.8 kJ/mol could be shown. This data is in accordance with the literature values for acrylic acid polymerisation in water. In addition, linear correlations between the respective reaction parameters and the molecular weight for customised polymer synthesis in the range from 1.2 to 1.7 × 104 g/mol could be established. In comparison with aqueous acrylic acid polymerisation, it was found that the reaction rate constants in isopropanol were slower by a factor of approximately 10 under similar reaction conditions.


2021 ◽  
Author(s):  
Matthew P Swaffer ◽  
Georgi K Marinov ◽  
Huan Zheng ◽  
Andrew W Jones ◽  
Anshul Kundaje ◽  
...  

A defining feature of cellular growth is that protein and mRNA amounts scale with cell size so that concentrations remain approximately constant, thereby ensuring similar reaction rates and efficient biosynthesis. A key component of this biosynthetic scaling is the scaling of mRNA amounts with cell size, which occurs even among cells with the same DNA template copy number. Here, we identify RNA polymerase II as a major limiting factor increasing transcription with cell size. Other components of the transcriptional machinery are only minimally limiting and the chromatin environment is largely invariant with size. However, RNA polymerase II activity does not increase in direct proportion to cell size, inconsistent with previously proposed DNA-titration models. Instead, our data support a dynamic equilibrium model where the rate of polymerase loading is proportional to the unengaged nucleoplasmic polymerase concentration. This sublinear transcriptional increase is then balanced by a compensatory increase in mRNA stability as cells get larger. Taken together, our results show how limiting RNA polymerase II and feedback on mRNA stability work in concert to ensure the precise scaling of mRNA amounts across the physiological cell size range.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1061
Author(s):  
Maria N. Timofeeva ◽  
Ivan A. Lukoyanov ◽  
Valentina N. Panchenko ◽  
Biswa Nath Bhadra ◽  
Evgenii Yu Gerasimov ◽  
...  

Zeolitic imidazolate frameworks MAF-5 and MAF-6 based on Zn2+ and 2-ethylimidazole were demonstrated to be efficient heterogeneous catalysts in solvent-free coupling of CO2 and propylene oxide (PO) to produce propylene carbonate (PC) at 0.8 MPa of CO2 and 80 °C. Activity of MAF-5 was lower in comparison with MAF-6 due to the difference in their structural and textural characteristics. MAF-6 samples with particle size of 190 ± 20, 360 ± 30, and 810 ± 30 nm were prepared at room temperature from [Zn(NH3)4](OH)2 and 2-ethylimidazole. Control of particle size was achieved by variation of type of alcohol in alcohol/cyclohexane media for the preparation of MAF-6. According to this comprehensive study, the yield of PC was found to decrease with increasing crystal size of the MAF-6 material, which was related to the change in textural properties and the number and localization of active sites. The combination of MAF-6 with particle size of with particle size of 190 ± 20 nm and tetrabutylammonium bromide ([n-Bu4N]Br) as co-catalyst led to an approximately 4-fold enhancement in the yield of PC (80.5%). Compared with reported ZIFs catalysts, the efficiencies of MAF-5/[n-Bu4N]Br and MAF-6/[n-Bu4N]Br binary systems were comparable and higher under similar reaction conditions.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4926
Author(s):  
Robert Szczęsny ◽  
Tuan K. A. Hoang ◽  
Liliana Dobrzańska ◽  
Duncan H. Gregory

Herein we describe an alternative strategy to achieve the preparation of nanoscale Cu3N. Copper(II) oxide/hydroxide nanopowder precursors were successfully fabricated by solution methods. Ammonolysis of the oxidic precursors can be achieved essentially pseudomorphically to produce either unsupported or supported nanoparticles of the nitride. Hence, Cu3N particles with diverse morphologies were synthesized from oxygen-containing precursors in two-step processes combining solvothermal and solid−gas ammonolysis stages. The single-phase hydroxochloride precursor, Cu2(OH)3Cl was prepared by solution-state synthesis from CuCl2·2H2O and urea, crystallising with the atacamite structure. Alternative precursors, CuO and Cu(OH)2, were obtained after subsequent treatment of Cu2(OH)3Cl with NaOH solution. Cu3N, in the form of micro- and nanorods, was the sole product formed from ammonolysis using either CuO or Cu(OH)2. Conversely, the ammonolysis of dicopper trihydroxide chloride resulted in two-phase mixtures of Cu3N and the monoamine, Cu(NH3)Cl under similar experimental conditions. Importantly, this pathway is applicable to afford composite materials by incorporating substrates or matrices that are resistant to ammoniation at relatively low temperatures (ca. 300 °C). We present preliminary evidence that Cu3N/SiO2 nanocomposites (up to ca. 5 wt.% Cu3N supported on SiO2) could be prepared from CuCl2·2H2O and urea starting materials following similar reaction steps. Evidence suggests that in this case Cu3N nanoparticles are confined within the porous SiO2 matrix.


Sign in / Sign up

Export Citation Format

Share Document