Alzheimer's Disease Classification Based on Multi-feature Fusion

Author(s):  
Nuwan Madusanka ◽  
Heung-Kook Choi ◽  
Jae-Hong So ◽  
Boo-Kyeong Choi

Background: In this study, we investigated the fusion of texture and morphometric features as a possible diagnostic biomarker for Alzheimer’s Disease (AD). Methods: In particular, we classified subjects with Alzheimer’s disease, Mild Cognitive Impairment (MCI) and Normal Control (NC) based on texture and morphometric features. Currently, neuropsychiatric categorization provides the ground truth for AD and MCI diagnosis. This can then be supported by biological data such as the results of imaging studies. Cerebral atrophy has been shown to correlate strongly with cognitive symptoms. Hence, Magnetic Resonance (MR) images of the brain are important resources for AD diagnosis. In the proposed method, we used three different types of features identified from structural MR images: Gabor, hippocampus morphometric, and Two Dimensional (2D) and Three Dimensional (3D) Gray Level Co-occurrence Matrix (GLCM). The experimental results, obtained using a 5-fold cross-validated Support Vector Machine (SVM) with 2DGLCM and 3DGLCM multi-feature fusion approaches, indicate that we achieved 81.05% ±1.34, 86.61% ±1.25 correct classification rate with 95% Confidence Interval (CI) falls between (80.75-81.35) and (86.33-86.89) respectively, 83.33%±2.15, 84.21%±1.42 sensitivity and 80.95%±1.52, 85.00%±1.24 specificity in our classification of AD against NC subjects, thus outperforming recent works found in the literature. For the classification of MCI against AD, the SVM achieved a 76.31% ± 2.18, 78.95% ±2.26 correct classification rate, 75.00% ±1.34, 76.19%±1.84 sensitivity and 77.78% ±1.14, 82.35% ±1.34 specificity. Results and Conclusion: The results of the third experiment, with MCI against NC, also showed that the multiclass SVM provided highly accurate classification results. These findings suggest that this approach is efficient and may be a promising strategy for obtaining better AD, MCI and NC classification performance.

2010 ◽  
Vol 16 (5) ◽  
pp. 910-920 ◽  
Author(s):  
MICHAEL M. EHRENSPERGER ◽  
MANFRED BERRES ◽  
KIRSTEN I. TAYLOR ◽  
ANDREAS U. MONSCH

AbstractThe goal of the present study was to evaluate the diagnostic discriminability of three different global scores for the German version of the Consortium to Establish a Registry on Alzheimer’s Disease-Neuropsychological Assessment Battery (CERAD-NAB). The CERAD-NAB was administered to 1100 healthy control participants [NC; Mini-Mental State Examination (MMSE) mean = 28.9] and 352 patients with very mild Alzheimer’s disease (AD; MMSE mean = 26.1) at baseline and subsets of participants at follow-up an average of 2.4 (NC) and 1.2 (AD) years later. We calculated the following global scores: Chandler et al.’s (2005) score (summed raw scores), logistic regression on principal components analysis scores (PCA-LR), and logistic regression on demographically corrected CERAD-NAB variables (LR). Correct classification rates (CCR) were compared with areas under the receiver operating characteristics curves (AUC). The CCR of the LR score (AUC = .976) exceeded that of the PCA-LR, while the PCA-LR (AUC = .968) and Chandler (AUC = .968) scores performed comparably. Retest data improved the CCR of the PCA-LR and Chandler (trend) scores. Thus, for the German CERAD-NAB, Chandler et al.’s total score provided an effective global measure of cognitive functioning, whereby the inclusion of retest data tended to improve correct classification of individual cases. (JINS, 2010, 16, 910–920.)


2008 ◽  
Author(s):  
Hidetaka Arimura ◽  
Takashi Yoshiura ◽  
Seiji Kumazawa ◽  
Kazuhiro Tanaka ◽  
Hiroshi Koga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document