Detection and Classification of Hippocampal Structural Changes in MR Images as a Biomarker for Alzheimer’s Disease

Author(s):  
Katia Maria Poloni ◽  
Ricardo José Ferrari
Author(s):  
Nuwan Madusanka ◽  
Heung-Kook Choi ◽  
Jae-Hong So ◽  
Boo-Kyeong Choi

Background: In this study, we investigated the fusion of texture and morphometric features as a possible diagnostic biomarker for Alzheimer’s Disease (AD). Methods: In particular, we classified subjects with Alzheimer’s disease, Mild Cognitive Impairment (MCI) and Normal Control (NC) based on texture and morphometric features. Currently, neuropsychiatric categorization provides the ground truth for AD and MCI diagnosis. This can then be supported by biological data such as the results of imaging studies. Cerebral atrophy has been shown to correlate strongly with cognitive symptoms. Hence, Magnetic Resonance (MR) images of the brain are important resources for AD diagnosis. In the proposed method, we used three different types of features identified from structural MR images: Gabor, hippocampus morphometric, and Two Dimensional (2D) and Three Dimensional (3D) Gray Level Co-occurrence Matrix (GLCM). The experimental results, obtained using a 5-fold cross-validated Support Vector Machine (SVM) with 2DGLCM and 3DGLCM multi-feature fusion approaches, indicate that we achieved 81.05% ±1.34, 86.61% ±1.25 correct classification rate with 95% Confidence Interval (CI) falls between (80.75-81.35) and (86.33-86.89) respectively, 83.33%±2.15, 84.21%±1.42 sensitivity and 80.95%±1.52, 85.00%±1.24 specificity in our classification of AD against NC subjects, thus outperforming recent works found in the literature. For the classification of MCI against AD, the SVM achieved a 76.31% ± 2.18, 78.95% ±2.26 correct classification rate, 75.00% ±1.34, 76.19%±1.84 sensitivity and 77.78% ±1.14, 82.35% ±1.34 specificity. Results and Conclusion: The results of the third experiment, with MCI against NC, also showed that the multiclass SVM provided highly accurate classification results. These findings suggest that this approach is efficient and may be a promising strategy for obtaining better AD, MCI and NC classification performance.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 778
Author(s):  
Nitsa J. Herzog ◽  
George D. Magoulas

Early identification of degenerative processes in the human brain is considered essential for providing proper care and treatment. This may involve detecting structural and functional cerebral changes such as changes in the degree of asymmetry between the left and right hemispheres. Changes can be detected by computational algorithms and used for the early diagnosis of dementia and its stages (amnestic early mild cognitive impairment (EMCI), Alzheimer’s Disease (AD)), and can help to monitor the progress of the disease. In this vein, the paper proposes a data processing pipeline that can be implemented on commodity hardware. It uses features of brain asymmetries, extracted from MRI of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, for the analysis of structural changes, and machine learning classification of the pathology. The experiments provide promising results, distinguishing between subjects with normal cognition (NC) and patients with early or progressive dementia. Supervised machine learning algorithms and convolutional neural networks tested are reaching an accuracy of 92.5% and 75.0% for NC vs. EMCI, and 93.0% and 90.5% for NC vs. AD, respectively. The proposed pipeline offers a promising low-cost alternative for the classification of dementia and can be potentially useful to other brain degenerative disorders that are accompanied by changes in the brain asymmetries.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Saruar Alam ◽  
Goo-Rak Kwon ◽  
Ji-In Kim ◽  
Chun-Su Park

Alzheimer’s disease (AD) is a leading cause of dementia, which causes serious health and socioeconomic problems. A progressive neurodegenerative disorder, Alzheimer’s causes the structural change in the brain, thereby affecting behavior, cognition, emotions, and memory. Numerous multivariate analysis algorithms have been used for classifying AD, distinguishing it from healthy controls (HC). Efficient early classification of AD and mild cognitive impairment (MCI) from HC is imperative as early preventive care could help to mitigate risk factors. Magnetic resonance imaging (MRI), a noninvasive biomarker, displays morphometric differences and cerebral structural changes. A novel approach for distinguishing AD from HC using dual-tree complex wavelet transforms (DTCWT), principal coefficients from the transaxial slices of MRI images, linear discriminant analysis, and twin support vector machine is proposed here. The prediction accuracy of the proposed method yielded up to 92.65 ± 1.18 over the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, with a specificity of 92.19 ± 1.56 and sensitivity of 93.11 ± 1.29, and 96.68 ± 1.44 over the Open Access Series of Imaging Studies (OASIS) dataset, with a sensitivity of 97.72 ± 2.34 and specificity of 95.61 ± 1.67. The accuracy, sensitivity, and specificity achieved using the proposed method are comparable or superior to those obtained by various conventional AD prediction methods.


Sign in / Sign up

Export Citation Format

Share Document