Synthesis and In-silico identification of new bioactive 1,3,4-oxadiazole tagged 2,3-dihydroimidazo[1,2-a]pyridine derivatives

2020 ◽  
Vol 16 ◽  
Author(s):  
Bhagwat S. Jadhav ◽  
Vipul P. Purohit ◽  
Ramesh S. Yamgar ◽  
Rajesh S. Kenny ◽  
Suraj N. Mali ◽  
...  

Background: Tuberculosis (TB) continues to be the most threatening cause of death in recent years. There is urgent need of search more potent, less toxic antitubercular agents. Methods: A set of five new 1,3,4-oxadiazolyl-imidazo-1,2-pyridine derivatives (4a-4e) was synthesized and screened invitro for their antibacterial activity against Mycobacterium tuberculosis (H37 RV strain) ATCC No-27294. Results: Compound 4b displayed potent antitubercular activity at MIC 6.25 µg/mL. In-silico molecular docking studies were performed for evaluation of the binding patterns of compounds 4a-4e in the binding site of proteins like, Pantothenate synthatase and enoyl acyl reductase inhibitor. The outcomes of the in- vitro antitubercular studies were in well agreement with the molecular docking studies. These newly synthesized compounds were found to have good ADMET profile. We also explored possible anticancer activity using in-silico methods. Conclusion: These results shows that readily synthesized 1,3,4-oxadiazolyl-imidazo-1,2-pyridine derivatives (4a-4e) are attracting new class of potent anti-TB targets as well as possible anticancer activity that worth additional opportunities for improvements.

2020 ◽  
Vol 32 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
P. Raghurama Shetty ◽  
G. Shivaraja ◽  
G. Krishnaswamy ◽  
K. Pruthviraj ◽  
Vivek Chandra Mohan ◽  
...  

In this work, some 2-phenyl quinoline-4-carboxamide derivatives (5a-j) were synthesized via base catalyzed Pfitzinger reaction of isatin and acetophenone followed by C-N coupling reaction using POCl3 and assessed them for their in vitro antimicrobial and anticancer activity. The structure of newly synthesized compound were established by FT-IR, 1H & 13C NMR and Mass spectrometric analysis. The synthesized carboxamides were subjected to preliminary in vitro antibacterial activity as well as for antifungal activity. Results of antibacterial activity were compared with standard antibacterial (ciprofloxocin) and antifungal (fluconozole). Among the tested compounds, 5d, 5f and 5h exhibited promising activity with zone of inhibition ranging from 10 to 25 mm. Further, the anticancer activity determined using MTT assay against two cancer cell lines. Compounds 5b, 5d, 5f and 5h showed good anticancer activity among all the other derivatives. In order to correlate the in vitro results, in silico ADME and Molecular docking studies were carried out for (5a-j). ADME properties results showed that all the compounds obey rule of Five rule except 5a, 5e and 5g compound. Molecular docking studies of the synthesized compounds showed good binding affinity through hydrogen bond interactions with key residues on active sites as well as neighboring residues within the active site of chosen target proteins viz. antibacterial, antifungal and anticancer. Comparison of both results of in silico as well as in vitro investigation suggests that the synthesized compounds may act as potential antimicrobial as well as anticancer agents.


Author(s):  
Gurubasavaraja S.P. Matada ◽  
Nahid Abbas ◽  
Prasad S. Dhiwar ◽  
Rajdeep Basu ◽  
Giles Devasahayam

Background: The abnormal signaling from tyrosine kinase causes many types of cancers namely breast cancer, non-small cell lung cancer, and chronic myeloid leukemia. This research reports the in-silico, synthesis, and in-vitro study of novel pyrimidine derivatives as EGFR inhibitors. Objective: The objective of the research study is to discover more promising lead compounds using drug discovery process, in which the rational drug design is achieved by the molecular docking and virtual pharmacokinetic studies. Methods: The molecular docking studies were carried out using discovery studio 3.5-version software. The molecules with good docking and binding energy score were synthesized as well as their structures were confirmed by FT-IR, NMR, Mass and elemental analysis. Subsequently molecules were evaluated for their anticancer activity using MDA-MB-231, MCF-7 and A431 breast cancer cell lines by MTT and tyrosine kinase assay methodology. Results: Pyrimidine derivatives displayed anticancer activity. Particularly, compound R8 shows significant cytotoxicity against MDA-MB-231 with an IC50 18.5 ± 0.6 µM. Molecular docking studies proved that the compound R8 has good binding fitting by forming hydrogen bonds with amino acid residues at ATP binding sites of EGFR. Conclusion: Eight pyrimidine derivatives were designed, synthesized and evaluated against breast cancer cell lines. Compound R8 significantly inhibited the growth of MDA-MB-231 and MCF-7. Molecular docking studies reveled that compound R8 has good fitting by forming different Hydrogen bonding interactions with amino acids at ATP binding site of epidermal growth factor receptor target. Compound R8 was a promising lead molecule that showed better results as compared to other compounds in in-vitro studies.


ACS Omega ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 17145-17154 ◽  
Author(s):  
Filipa Siopa ◽  
Raquel F. M. Frade ◽  
Ana Diniz ◽  
Joana M. Andrade ◽  
Marisa Nicolai ◽  
...  

2017 ◽  
Vol 1145 ◽  
pp. 160-169 ◽  
Author(s):  
G.R. Subhashree ◽  
J. Haribabu ◽  
S. Saranya ◽  
P. Yuvaraj ◽  
D. Anantha Krishnan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document