Exploring Natural Products from the Biodiversity of Pakistan for Computational Drug Discovery Studies: Collection, Optimization, Design and Development of A Chemical Database (ChemDP)

2015 ◽  
Vol 11 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Shaher Mirza ◽  
Habib Bokhari ◽  
Muhammad Fatmi
Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1518 ◽  
Author(s):  
Ana L. Chávez-Hernández ◽  
Norberto Sánchez-Cruz ◽  
José L. Medina-Franco

Natural products and semi-synthetic compounds continue to be a significant source of drug candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is causing the current pandemic. Besides being attractive sources of bioactive compounds for further development or optimization, natural products are excellent substrates of unique substructures for fragment-based drug discovery. To this end, fragment libraries should be incorporated into automated drug design pipelines. However, public fragment libraries based on extensive collections of natural products are still limited. Herein, we report the generation and analysis of a fragment library of natural products derived from a database with more than 400,000 compounds. We also report fragment libraries of a large food chemical database and other compound datasets of interest in drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment libraries were characterized in terms of content and diversity.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joelle Ngo Hanna ◽  
Boris D. Bekono ◽  
Luc C. O. Owono ◽  
Flavien A. A. Toze ◽  
James A. Mbah ◽  
...  

Abstract In the quest to know why natural products (NPs) have often been considered as privileged scaffolds for drug discovery purposes, many investigations into the differences between NPs and synthetic compounds have been carried out. Several attempts to answer this question have led to the investigation of the atomic composition, scaffolds and functional groups (FGs) of NPs, in comparison with synthetic drugs analysis. This chapter briefly describes an atomic enumeration method for chemical libraries that has been applied for the analysis of NP libraries, followed by a description of the main differences between NPs of marine and terrestrial origin in terms of their general physicochemical properties, most common scaffolds and “drug-likeness” properties. The last parts of the work describe an analysis of scaffolds and FGs common in NP libraries, focusing on huge NP databases, e.g. those in the Dictionary of Natural Products (DNP), NPs from cyanobacteria and the largest chemical class of NP – terpenoids.


2015 ◽  
Vol 20 (11) ◽  
pp. 1328-1336 ◽  
Author(s):  
Chih-Yuan Tseng ◽  
Jack Tuszynski

2021 ◽  
Author(s):  
Premanand Sathyanarayanamurthi ◽  
ARUNKUMAR GOPAL

Abstract The Topology Optimization design invariably shall be used in various applications like Aerojet designs, Aircraft Engineering designs and innovative systems for improving the efficiency of structure. The paper emphasizes more on general Topology Optimization design for a rectangular domain. The domain numerically analyzed with defined geometry setting and defined boundary conditions for finding the Stress and displacement. In this Topology Optimization Design synthesis, the result is suitable volume and mass reduction in the Aerojet application parts which further can be taken for Prototype development in 3D printing and experimentally test with safety characteristics and compares Objective functions chosen for design and development. The design can be used for other various automotive and aerospace devices based on deformation level and application of external forces. The Final destination of this design and development ends with passing Fatigue Endurance test cycle test pass condition in Aerojet and automotive vehicles in static and dynamic state.


Sign in / Sign up

Export Citation Format

Share Document