Design, Synthesis and invitro biological evaluation of Pyridine,thiadazole, Benzimidazole and Acetyl thiophneAnalogues as Anti tubercular Agents Targeting enzyme InhA

Author(s):  
Ayyadurai J Suresh ◽  
Sivashankar Nandini ◽  
Krishnanmurthy Sangeetha ◽  
Loganathan S Dhivya ◽  
Parakkot R Surya

Background: Tuberculosis, is a chronic infectious disease, affects one third of the global population. Emergence of Multi-resistant (MDR) strains and high susceptibility of human immunodeficiency virus (HIV) infected persons to the disease forced to develop novel anti-tuberculosis agents and preferably have a novel mechanism of action as to avoid crossresistant with other agents. Literature survey evidences that, Pyridine, Thiadiazole , Benzimidazole; and Acetyl thiophene derivatives exhibit various pharmacological activities, including anti-mycobacterial activity. Methods: Thus, a series of Pyridine, Thiadiazole, Benzimidazole; and Acetyl thiophene based molecules were designed and docked against crucial mtb enzyme target InhA (Enoyl Acyl Carrier Protein Reductase) Enzyme. The docked molecules were screened against good docking-score and multiple interactions and opted for synthesis. Synthesized molecules were re crystallized to obtain the purity. All the purified compounds were characterized by various spectral analyses and evaluated for anti- mycobacterial activity against tuberculosis H37RV strain by Microplate Alamar Blue Assay (MABA) method. Results: The experimental results shown that schiff base of Pyridine (Compounds ‘d’ ) and Benzimidazole derivatives (Compounds ‘i’ ) possesses good anti-tubercular activity with a MIC below 1.6 μg /mL. Further compound ‘e’ of benzimdazole derivative showed good anti tubercular activity with an MIC below 6.25 μg /mL. Whereas 2 - acetyl thiopene compounds exhibited moderate anti tubercular activity at below 50μg/mL. Conclusion: The comparative in vitro and molecular docking study analysis reveals that, compared to chalcones of Acetyl thiophne derivatives, Pyridine, thiadazole and Benzimidazole based schiff bases exhibited best anti tubercular activity.

2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4034 ◽  
Author(s):  
Tao Wang ◽  
Tao Peng ◽  
Xiaoxue Wen ◽  
Gang Wang ◽  
Yunbo Sun ◽  
...  

In this work, a series of benzylsulfone coumarin derivatives 5a–5o were synthesized and characterized. Kinase inhibitory activity assay indicated that most of the compounds showed considerable activity against PI3K. Anti-tumor activity studies of the active compounds were also carried out in vitro on the Hela, HepG2, H1299, HCT-116, and MCF-7 tumor cell lines by MTS assay. The structure–activity relationships (SARs) of these compounds were analyzed in detail. Compound 5h exhibited the most potent activities against the mentioned cell lines with IC50 values ranging from 18.12 to 32.60 μM, followed by 5m with IC50 values of 29.30–42.14 μM. Furthermore, 5h and 5m clearly retarded the migration of Hela cells in vitro. Next, an in silico molecular docking study was conducted to evaluate the binding models of 5h and 5m towards PI3Kα and PI3Kβ. Collectively, the above findings suggested that compounds 5h and 5m might be promising PI3K inhibitors deserving further investigation for cancer treatment.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2719 ◽  
Author(s):  
Xiu-juan Lan ◽  
Hai-tao Yan ◽  
Feng Lin ◽  
Shi Hou ◽  
Chen-chen Li ◽  
...  

Polymyxins are considered to be the last-line antibiotics that are used to treat infections caused by multidrug-resistant (MDR) gram-negative bacteria; however, the plasmid-mediated transferable colistin resistance gene (mcr-1) has rendered polymyxins ineffective. Therefore, the protein encoded by mcr-1, MCR-1, could be a target for structure-based design of inhibitors to tackle polymyxins resistance. Here, we identified racemic compound 3 as a potential MCR-1 inhibitor by virtual screening, and 26 compound 3 derivatives were synthesized and evaluated in vitro. In the cell-based assay, compound 6g, 6h, 6i, 6n, 6p, 6q, and 6r displayed more potent activity than compound 3. Notably, 25 μΜ of compound 6p or 6q combined with 2 μg·mL-1 colistin could completely inhibit the growth of BL21(DE3) expressing mcr-1, which exhibited the most potent activity. In the enzymatic assay, we elucidate that 6p and 6q could target the MCR-1 to inhibit the activity of the protein. Additionally, a molecular docking study showed that 6p and 6q could interact with Glu246 and Thr285 via hydrogen bonds and occupy well the cavity of the MCR-1 protein. These results may provide a potential avenue to overcome colistin resistance, and provide some valuable information for further investigation on MCR-1 inhibitors.


2020 ◽  
Vol 16 (7) ◽  
pp. 892-902 ◽  
Author(s):  
Aida Iraji ◽  
Mahsima Khoshneviszadeh ◽  
Pegah Bakhshizadeh ◽  
Najmeh Edraki ◽  
Mehdi Khoshneviszadeh

Background: Melanogenesis is a process of melanin synthesis, which is a primary response for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting step of the melanin formation. Natural products have shown potent inhibitors, but some of these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may lead to the potent anti– tyrosinase agents. Objective: A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating potential have been evaluated. Methods: Design and synthesized compounds were evaluated for activity against mushroom tyrosinase. The metal chelating capacity of the potent compound was examined using the mole ratio method. Molecular docking of the synthesized compounds was carried out into the tyrosine active site. Results: Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase. Confirming in vitro results were performed via the molecular docking analysis demonstrating hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase. Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex. Conclusion: The findings in the present study demonstrate that 4-Hydroxy-N'- methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase and can be used as an inspiration for further studies in this area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fariba Peytam ◽  
Ghazaleh Takalloobanafshi ◽  
Toktam Saadattalab ◽  
Maryam Norouzbahari ◽  
Zahra Emamgholipour ◽  
...  

AbstractIn an attempt to find novel, potent α-glucosidase inhibitors, a library of poly-substituted 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines 3a–ag have been synthesized through heating a mixture of 2-aminobenzimidazoles 1 and α-azidochalcone 2 under the mild conditions. This efficient, facile protocol has been resulted into the desirable compounds with a wide substrate scope in good to excellent yields. Afterwards, their inhibitory activities against yeast α-glucosidase enzyme were investigated. Showing IC50 values ranging from 16.4 ± 0.36 µM to 297.0 ± 1.2 µM confirmed their excellent potency to inhibit α-glucosidase which encouraged us to perform further studies on α-glucosidase enzymes obtained from rat as a mammal source. Among various synthesized 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines, compound 3k exhibited the highest potency against both Saccharomyces cerevisiae α-glucosidase (IC50 = 16.4 ± 0.36 μM) and rat small intestine α-glucosidase (IC50 = 45.0 ± 8.2 μM). Moreover, the role of amine moiety on the observed activity was studied through substituting with chlorine and hydrogen resulted into a considerable deterioration on the inhibitory activity. Kinetic study and molecular docking study have confirmed the in-vitro results.


Sign in / Sign up

Export Citation Format

Share Document