Polyacrylic Acid Modified Cerium Oxide Nanoparticles: Synthesis and Characterization as a Peroxidase Mimic for Non-Enzymatic H2O2 Sensor

2020 ◽  
Vol 16 (5) ◽  
pp. 816-828
Author(s):  
Gurdeep Rattu ◽  
Nishtha Khansili ◽  
Prayaga M. Krishna

Background: Cerium oxide nanoparticles (nanoceria) are efficient free-radical scavengers due to their dual valence state and thus exhibit optical and catalytic properties. Therefore, the main purpose of this work was to understand the peroxidase mimic activity of polymer-stabilized nanoceria for enzyme-less H2O2 sensing by fluorescence spectrometer. Objective: This research revealed the development of fluorescence hydrogen peroxide nanosensor based on the peroxidase-like activity of polyacrylic acid stabilized nanoceria (PAA-CeO2 Nps). Methods: PAA-CeO2 Nps were synthesized by simple cross-linking reaction at a low temperature and characterized by XRD, SEM, Zeta potential, TGA, FT-IR and UV-VIS spectroscopic analysis. H2O2 sensing was performed by a fluorescence spectrometer. Results:: The synthesized polymer nanocomposite was characterized by XRD, SEM, TGA, FT-IR and UV-VIS spectroscopic analysis. The XRD diffraction patterns confirmed the polycrystalline nature and SEM micrograph showed nanoparticles having hexagonal symmetry and crystallite size of 32 nm. The broad peak of Ce–O bond appeared at 508 cm-1. UV-VIS measurements revealed a welldefined absorbance peak around 315 nm and an optical band-gap of 3.17 eV. As synthesized PAACeO2 Nps effectively catalysed the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. Under optimized conditions, the linear range for determination of hydrogen peroxide was 0.01 - 0.2 mM with a limit of detection (LOD) of 1.2 μM. Conclusion: The proposed method is ideally suited for the sensing of H2O2 at a low cost and this detection system enabled the sensing of analytes (sugars), which can enzymatically generate hydrogen peroxide.

Nanoscale ◽  
2018 ◽  
Vol 10 (15) ◽  
pp. 6971-6980 ◽  
Author(s):  
V. Baldim ◽  
F. Bedioui ◽  
N. Mignet ◽  
I. Margaill ◽  
J.-F. Berret

Cerium oxide nanoparticles are known to catalyze the decomposition of reactive oxygen species such as the superoxide radical and hydrogen peroxide.


2014 ◽  
Vol 9 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Guoqiang Zhou ◽  
Yang Li ◽  
Baofeng Zheng ◽  
Wenying Wang ◽  
Jing Gao ◽  
...  

2012 ◽  
Vol 411-412 ◽  
pp. 1-6 ◽  
Author(s):  
M.H.M.T. Assumpção ◽  
A. Moraes ◽  
R.F.B. De Souza ◽  
I. Gaubeur ◽  
R.T.S. Oliveira ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 59939-59945 ◽  
Author(s):  
Ruochen Guo ◽  
Yanru Wang ◽  
Shaoxuan Yu ◽  
Wenxin Zhu ◽  
Fangqing Zheng ◽  
...  

Nanoceria (cerium oxide nanoparticles) exhibits excellent catalytic activity towards chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2), which has been reported.


2018 ◽  
Vol 35 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Thirunavukkarasu Arunachalam ◽  
Muthukumaran Karpagasundaram ◽  
Nithya Rajarathinam

Abstract Cerium oxide nanoparticles (CONPs) were prepared using ultrasound assisted leaf extract of Prosopis juliflora acting as a reducing as well as stabilizing agent. The synthesized CONPs were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). From the UV-Vis analysis, the optical band gap of the prepared CONPs (Eg = 3.62 eV) was slightly increased as compared to the bulk ceria (Eg = 3.19 eV). The phytochemicals in the extract reduced the particle size to 3.7 nm ± 0.3 nm, as it is evident from the PSA. FT-IR results confirmed the Ce-O stretching bands by showing the peaks at 452 cm-1. The Raman spectrumshowed a characteristic peak shift for CONPs at 461.2 cm-1. XRD analysis revealed the cubic fluorite structure of the synthesizednanoparticles with the lattice constant, a of 5.415 Å and unit cell volume, V of 158.813 Å3. XPS signals were used to determine the concentration of Ce3+ and Ce4+ in the prepared CONPs and it was found that major amount of cerium exist in the Ce4+ state. HRTEM images showed spherical shaped particles with an average size of 15 nm. Furthermore, the antibacterial activity of the prepared CONPs was evaluated and their efficacies were compared with the conventional antibiotics using disc diffusion assay against a set of Gram positive (G+) bacteria (Staphylococcus aureus, Streptococcus pneumonia) and Gram negative (G-) bacteria (Pseudomonas aeruginosa, Proteus vulgaris). The results suggested that CONPs showed antibacterial activity with significant variations due to the differences in the membrane structure and cell wall composition among the two groups tested.


Sign in / Sign up

Export Citation Format

Share Document