Endometrial Regeneration in Asherman's Syndrome: Clinical and Translational evidence of Stem Cell Therapies

2019 ◽  
Vol 14 (6) ◽  
pp. 454-459
Author(s):  
Xuejing Hou ◽  
Ying Liu ◽  
Isabelle Streuli ◽  
Patrick Dällenbach ◽  
Jean Dubuisson ◽  
...  

Asherman’s Syndrome or Intrauterine adhesions is an acquired uterine condition where fibrous scarring forms within the uterine cavity, resulting in reduced menstrual flow, pelvic pain and infertility. Until recently, the molecular mechanisms leading to the formation of fibrosis were poorly understood, and the treatment of Asherman’s syndrome has largely focused on hysteroscopic resection of adhesions, hormonal therapy, and physical barriers. Numerous studies have begun exploring the molecular mechanisms behind the fibrotic process underlying Asherman’s Syndrome as well as the role of stem cells in the regeneration of the endometrium as a treatment modality. The present review offers a summary of available stem cell-based regeneration studies, as well as highlighting current gaps in research.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Damian Medici

Endothelial-mesenchymal transition (EndMT) is a fundamental cellular mechanism that regulates embryonic development and diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for tissue regeneration.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nima Purvis ◽  
Andrew Bahn ◽  
Rajesh Katare

Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.


2013 ◽  
Vol 6 ◽  
pp. IJTR.S12626 ◽  
Author(s):  
Simon P. Jones ◽  
Gilles J. Guillemin ◽  
Bruce J. Brew

The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.


2020 ◽  
Vol 12 (7) ◽  
pp. 659-675
Author(s):  
Anjali C Raghuram ◽  
Roy P Yu ◽  
Andrea Y Lo ◽  
Cynthia J Sung ◽  
Melissa Bircan ◽  
...  

2017 ◽  
pp. 217-227
Author(s):  
Benjamin J. Seifer ◽  
Hanyia Naqvi ◽  
Elham Neisani Samani ◽  
Graciela Krikun ◽  
Hugh S. Taylor

2015 ◽  
Vol 38 (3) ◽  
pp. 429-445 ◽  
Author(s):  
David Oehme ◽  
Tony Goldschlager ◽  
Jeffrey V. Rosenfeld ◽  
Peter Ghosh ◽  
Graham Jenkin

Sign in / Sign up

Export Citation Format

Share Document