scholarly journals The Role of MicroRNAs in Cardiac Stem Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nima Purvis ◽  
Andrew Bahn ◽  
Rajesh Katare

Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.

2019 ◽  
Vol 14 (6) ◽  
pp. 454-459
Author(s):  
Xuejing Hou ◽  
Ying Liu ◽  
Isabelle Streuli ◽  
Patrick Dällenbach ◽  
Jean Dubuisson ◽  
...  

Asherman’s Syndrome or Intrauterine adhesions is an acquired uterine condition where fibrous scarring forms within the uterine cavity, resulting in reduced menstrual flow, pelvic pain and infertility. Until recently, the molecular mechanisms leading to the formation of fibrosis were poorly understood, and the treatment of Asherman’s syndrome has largely focused on hysteroscopic resection of adhesions, hormonal therapy, and physical barriers. Numerous studies have begun exploring the molecular mechanisms behind the fibrotic process underlying Asherman’s Syndrome as well as the role of stem cells in the regeneration of the endometrium as a treatment modality. The present review offers a summary of available stem cell-based regeneration studies, as well as highlighting current gaps in research.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 349-351 ◽  
Author(s):  
Massimo De Felici ◽  
Anna Di Carlo ◽  
Maurizio Pesce

During embryogenesis germ cells originate from primordial germ cells (PGCs). The development of mammalian PGCs involves a number of complex events (formation and segregation of PGC precursors, PGC migration and proliferation) which lead to the differentiation of oocytes or prospermatogonia (for a review see De Feliciet al., 1992). During recent years developments in methods for isolation, purification and culture of mouse PGCs have led to significant progress in the understanding of molecular mechanisms of migration, proliferation and differentiation of these cells (for reviews see De Felici, 1994; and De Felici & Pesce, 1994a). In this paper we describe the key role played by stem cell factor (SCF) in PGC development and early folliculogenesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5790-5790
Author(s):  
Sidan Li ◽  
Qiongli Zhai ◽  
Dehui Zou ◽  
Changhong Li ◽  
Lugui Qiu

Abstract The majority of hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow surrounded by specialized bone-shielded environment. The specialized microenvironment or niche not only provides a favorable habitat for HSPC maintenance and development but also governs stem cell function. Here we investigated the potential role of bone remodeling osteoblasts and osteoclasts in homeostasis and stress-induced mobilization of hematopoietic progenitors, then further tested the hypothesis that targeting the niche might improve stem cell–based therapies using six mouse models to mimic the multiple rounds of chemotherapy followed by autologous hematopoietic stem cells (HSCs) transplantation in a clinical setting. Herein, we show that multiple rounds treatment of cytotoxic drugs influence niche. Serum osteocalcin level declined obviously (22.19 ± 1.08 ng/mL, before treatment vs 16.08 ± 2.12 ng/mL, steady state, P=0.01) in autologous HSPCs transplant patients. In mouse models, the number of CD45- Ter119- OPN+ osteoblast was significantly reduced (untreated, 3993 ± 129 cells/femur; CTLs, 1937 ±196 cells/femur; Gs, 1055 ± 43 cells/femur; P<0.01). Pharmacologic use of parathyroid hormone (PTH) or receptor activator of nuclear factor kappa-B ligand (RANKL) increases the number of HSC mobilized into the peripheral blood for stem cell harvests and protects stem cells from repeated exposure to cytotoxic chemotherapy. Ttreatment with granulocyte colony stimulating factor (G-CSF) plus PTH led to relative preservation of the HSC pool (G vs PTH, P<0.01; CTL vs PTH, P<0.05). Recipient mice transplanted with circulation HSPCs of P+R and P+R+G groups also showed more robust myeloid and lymphatic cell engraftment than did HSCs from either CTL or G group. These data provide evidence that targeting the HSPC niche may improve the efficacy of HSPC mobilization. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Adam C. Vandergriff ◽  
James Bizetto Meira de Andrade ◽  
Junnan Tang ◽  
M. Taylor Hensley ◽  
Jorge A. Piedrahita ◽  
...  

Despite the efficacy of cardiac stem cells (CSCs) for treatment of cardiomyopathies, there are many limitations to stem cell therapies. CSC-derived exosomes (CSC-XOs) have been shown to be responsible for a large portion of the regenerative effects of CSCs. Using a mouse model of doxorubicin induced dilated cardiomyopathy, we study the effects of systemic delivery of human CSC-XOs in mice. Mice receiving CSC-XOs showed improved heart function via echocardiography, as well as decreased apoptosis and fibrosis. In spite of using immunocompetent mice and human CSC-XOs, mice showed no adverse immune reaction. The use of CSC-XOs holds promise for overcoming the limitations of stem cells and improving cardiac therapies.


2017 ◽  
Vol 216 (5) ◽  
pp. 1215-1218
Author(s):  
Clara Sidor ◽  
Katja Röper

Neural stem cells or neuroblasts in the Drosophila melanogaster embryo delaminate as single cells from the embryonic epidermis to give rise to the nervous system. Using this accessible system to examine the molecular mechanisms of cell ingression at a high temporal and spatial resolution, in this issue, Simões et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201608038) reveal that myosin-driven anisotropic junction loss and apical constriction are the main drivers of this process.


Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 100 ◽  
Author(s):  
Masahiro Hata ◽  
Yoku Hayakawa ◽  
Kazuhiko Koike

Several stem cell markers within the gastrointestinal epithelium have been identified in mice. One of the best characterized is Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) and evidence suggests that Lgr5+ cells in the gut are the origin of gastrointestinal cancers. Reserve or facultative stem or progenitor cells with the ability to convert to Lgr5+ cells following injury have also been identified. Unlike the intestine, where Lgr5+ cells at the crypt base act as active stem cells, the stomach may contain unique stem cell populations, since gastric Lgr5+ cells seem to behave as a reserve rather than active stem cells, both in the corpus and in the antral glands. Gastrointestinal stem cells are supported by a specific microenvironment, the stem cell niche, which also promotes tumorigenesis. This review focuses on stem cell markers in the gut and their supporting niche factors. It also discusses the molecular mechanisms that regulate stem cell function and tumorigenesis.


2012 ◽  
Vol 90 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Paras Kumar Mishra ◽  
Vishalakshi Chavali ◽  
Naira Metreveli ◽  
Suresh C. Tyagi

The contribution of extracellular matrix (ECM) to stem cell survival and differentiation is unequivocal, and matrix metalloproteinase-9 (MMP9) induces ECM turn over; however, the role of MMP9 in the survival and differentiation of cardiac stem cells is unclear. We hypothesize that ablation of MMP9 enhances the survival and differentiation of cardiac stem cells into cardiomyocytes in diabetics. To test our hypothesis, Ins2+/− Akita, C57 BL/6J, and double knock out (DKO: Ins2+/−/MMP9−/−) mice were used. We created the DKO mice by deleting the MMP9 gene from Ins2+/−. The above 3 groups of mice were genotyped. The activity and expression of MMP9 in the 3 groups were determined by in-gel gelatin zymography, Western blotting, and confocal microscopy. To determine the role of MMP9 in ECM stiffness (fibrosis), we measured collagen deposition in the histological sections of hearts using Masson’s trichrome staining. The role of MMP9 in cardiac stem cell survival and differentiation was determined by co-immunoprecipitation (co-IP) of MMP9 with c-kit (a marker of stem cells) and measuring the level of troponin I (a marker of cardiomyocytes) by confocal microscopy in the 3 groups. Our results revealed that ablation of MMP9 (i) reduces the stiffness of ECM by decreasing collagen accumulation (fibrosis), and (ii) enhances the survival (elevated c-kit level) and differentiation of cardiac stem cells into cardiomyocytes (increased troponin I) in diabetes. We conclude that inhibition of MMP9 ameliorates stem cell survival and their differentiation into cardiomyocytes in diabetes.


Author(s):  
Yuki Hata ◽  
Junko Kyozuka

Abstract Key message This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution of plant stem cells. Abstract The establishment and maintenance of pluripotent stem cells in the shoot apical meristem (SAM) are key developmental processes in land plants including the most basal, bryophytes. Bryophytes, such as Physcomitrium (Physcomitrella) patens and Marchantia polymorpha, are emerging as attractive model species to study the conserved features and evolutionary processes in the mechanisms controlling stem cells. Recent studies using these model bryophyte species have started to uncover the similarities and differences in stem cell regulation between bryophytes and angiosperms. In this review, we summarize findings on stem cell function and its regulation focusing on different aspects including hormonal, genetic, and epigenetic control. Stem cell regulation through auxin, cytokinin, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling and chromatin modification by Polycomb Repressive Complex 2 (PRC2) and PRC1 is well conserved. Several transcription factors crucial for SAM regulation in angiosperms are not involved in the regulation of the SAM in mosses, but similarities also exist. These findings provide insights into the evolutionary trajectory of the SAM and the fundamental mechanisms involved in stem cell regulation that are conserved across land plants.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Winston T Stauffer ◽  
Shirin Doroudgar ◽  
Haley N Stephens ◽  
Erik A Blackwood ◽  
Christopher C Glembotski

Recent studies have suggested that multipotent stem cells residing in the adult heart, called cardiac stem cells (CSCs), mitigate damage in the infarcted or failing heart. Investigating the factors governing CSC proliferation and differentiation is key to understanding what role these cells play in the heart and in future therapeutic strategies. Additionally, activating transcription factor 6 (ATF6), an effector of the endoplasmic reticulum (ER) unfolded protein response (UPR), plays critical roles in development, as well as in the differentiation of certain stem cell types, though it has not been studied in this regard in the heart. Our lab has demonstrated that ATF6 in cardiac myocytes is cardioprotective in vivo during ischemia/reperfusion partly by virtue of its ability to induce an antioxidant gene program that reduces damaging reactive oxygen species (ROS). However, ATF6, and its involvement in antioxidant gene induction, have not been studied in CSCs. Therefore, here we hypothesized that activation of the ATF6 branch of the UPR in CSCs is important for their proliferation and differentiation, given that ROS is known to be essential for these processes. To address this hypothesis, we subjected cultured mouse CSCs to simulated ischemia and observed increased ATF6 target gene mRNA levels. This demonstrates that, despite their undifferentiated status, CSCs have a functional UPR, which can be activated in response to ischemic stress. ATF6 loss of function (LOF) in CSCs, via RNAi or chemical inhibitor, yielded a basal decrease in cell viability and an increase in several differentiation markers, similar to the effect of dexamethasone differentiation stimulus. Increased ROS was also observed in an ATF6 LOF model. Strikingly, cotreatment with a chemical ROS inhibitor significantly rescued cell viability and reduced markers of differentiation in CSCs with reduced ATF6 function. These results suggest that CSCs require a basal level of ATF6 activity to maintain their proliferation and pluripotentcy in vitro and that this is mediated by the role of ATF6 in the mitigation of ROS. This is an important finding given that stem cell expansion in vitro is a critical step in the characterization of stem cells and their use in many therapeutic treatment strategies.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Jie Shi ◽  
Jiulong Liang ◽  
Bingyu Guo ◽  
Yu Zhang ◽  
Qiang Hui ◽  
...  

Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes.


Sign in / Sign up

Export Citation Format

Share Document