The Roles of Long Non-coding RNA in Osteoporosis

2020 ◽  
Vol 15 (7) ◽  
pp. 639-645 ◽  
Author(s):  
Ying Li ◽  
Jinglan Li ◽  
Leilei Chen ◽  
Liangliang Xu

The Human Genome Project (HGP) announced in 2001 that it had sequenced the entire human genome, yielding nearly complete human DNA. About 98.5 percent of the human genome has been found to be non-coding sequences. Long non-coding RNA (lncRNA) is a non-coding RNA with a length between 200 and 100,000 nucleotide units. Because of shallow research on lncRNA, it was believed that it had no biological functions, but exists as a by-product of the transcription process. With the development of high-throughput sequencing technology, studies have shown that lncRNA plays important roles in many processes by participating in epigenetics, transcription, translation and protein modification. Current researches have shown that lncRNA also has an important part in the pathogenesis of osteoporosis. Osteoporosis is a common disorder of bone metabolism, also a major medical and socioeconomic challenge worldwide. It is characterized by a systemic reduction in bone mass and microstructure changes, which increases the risk of brittle fractures. It is more common in postmenopausal women and elderly men. However, the roles of lncRNA and relevant mechanisms in osteoporosis remain unclear. Based on this background, we hereby review the roles of lncRNA in osteoporosis, and how it influences the functions of osteoblasts and osteoclasts, providing reference to clinical diagnosis, treatment and prognosis of osteoporosis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongwei Yan ◽  
Qi Liu ◽  
Jieming Jiang ◽  
Xufang Shen ◽  
Lei Zhang ◽  
...  

AbstractAlthough sex determination and differentiation are key developmental processes in animals, the involvement of non-coding RNA in the regulation of this process is still not clarified. The tiger pufferfish (Takifugu rubripes) is one of the most economically important marine cultured species in Asia, but analyses of miRNA and long non-coding RNA (lncRNA) at early sex differentiation stages have not been conducted yet. In our study, high-throughput sequencing technology was used to sequence transcriptome libraries from undifferentiated gonads of T. rubripes. In total, 231 (107 conserved, and 124 novel) miRNAs were obtained, while 2774 (523 conserved, and 2251 novel) lncRNAs were identified. Of these, several miRNAs and lncRNAs were predicted to be the regulators of the expression of sex-related genes (including fru-miR-15b/foxl2, novel-167, novel-318, and novel-538/dmrt1, novel-548/amh, lnc_000338, lnc_000690, lnc_000370, XLOC_021951, and XR_965485.1/gsdf). Analysis of differentially expressed miRNAs and lncRNAs showed that three mature miRNAs up-regulated and five mature miRNAs were down-regulated in male gonads compared to female gonads, while 79 lncRNAs were up-regulated and 51 were down-regulated. These findings could highlight a group of interesting miRNAs and lncRNAs for future studies and may reveal new insights into the function of miRNAs and lncRNAs in sex determination and differentiation.


2020 ◽  
Vol 21 (1) ◽  
pp. 117-138
Author(s):  
Jeffery A. Schloss ◽  
Richard A. Gibbs ◽  
Vinod B. Makhijani ◽  
Andre Marziali

When the Human Genome Project was completed in 2003, automated Sanger DNA sequencing with fluorescent dye labels was the dominant technology. Several nascent alternative methods based on older ideas that had not been fully developed were the focus of technical researchers and companies. Funding agencies recognized the dynamic nature of technology development and that, beyond the Human Genome Project, there were growing opportunities to deploy DNA sequencing in biological research. Consequently, the National Human Genome Research Institute of the National Institutes of Health created a program—widely known as the Advanced Sequencing Technology Program—that stimulated all stages of development of new DNA sequencing methods, from innovation to advanced manufacturing and production testing, with the goal of reducing the cost of sequencing a human genome first to $100,000 and then to $1,000. The events of this period provide a powerful example of how judicious funding of academic and commercial partners can rapidly advance core technology developments that lead to profound advances across the scientific landscape.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Monika Cechova

Ever since the introduction of high-throughput sequencing following the human genome project, assembling short reads into a reference of sufficient quality posed a significant problem as a large portion of the human genome—estimated 50–69%—is repetitive. As a result, a sizable proportion of sequencing reads is multi-mapping, i.e., without a unique placement in the genome. The two key parameters for whether or not a read is multi-mapping are the read length and genome complexity. Long reads are now able to span difficult, heterochromatic regions, including full centromeres, and characterize chromosomes from “telomere to telomere”. Moreover, identical reads or repeat arrays can be differentiated based on their epigenetic marks, such as methylation patterns, aiding in the assembly process. This is despite the fact that long reads still contain a modest percentage of sequencing errors, disorienting the aligners and assemblers both in accuracy and speed. Here, I review the proposed and implemented solutions to the repeat resolution and the multi-mapping read problem, as well as the downstream consequences of reference choice, repeat masking, and proper representation of sex chromosomes. I also consider the forthcoming challenges and solutions with regards to long reads, where we expect the shift from the problem of repeat localization within a single individual to the problem of repeat positioning within pangenomes.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Ryuji Hamamoto

The Human Genome Project, completed in 2003 by an international consortium, is considered one of the most important achievements for mankind in the 21st century [...]


1993 ◽  
Vol 36 (3) ◽  
pp. 466-475 ◽  
Author(s):  
BELINDA J. F. ROSSITER ◽  
C THOMAS CASKEY

Sign in / Sign up

Export Citation Format

Share Document