scholarly journals Identification of sex differentiation-related microRNA and long non-coding RNA in Takifugu rubripes gonads

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongwei Yan ◽  
Qi Liu ◽  
Jieming Jiang ◽  
Xufang Shen ◽  
Lei Zhang ◽  
...  

AbstractAlthough sex determination and differentiation are key developmental processes in animals, the involvement of non-coding RNA in the regulation of this process is still not clarified. The tiger pufferfish (Takifugu rubripes) is one of the most economically important marine cultured species in Asia, but analyses of miRNA and long non-coding RNA (lncRNA) at early sex differentiation stages have not been conducted yet. In our study, high-throughput sequencing technology was used to sequence transcriptome libraries from undifferentiated gonads of T. rubripes. In total, 231 (107 conserved, and 124 novel) miRNAs were obtained, while 2774 (523 conserved, and 2251 novel) lncRNAs were identified. Of these, several miRNAs and lncRNAs were predicted to be the regulators of the expression of sex-related genes (including fru-miR-15b/foxl2, novel-167, novel-318, and novel-538/dmrt1, novel-548/amh, lnc_000338, lnc_000690, lnc_000370, XLOC_021951, and XR_965485.1/gsdf). Analysis of differentially expressed miRNAs and lncRNAs showed that three mature miRNAs up-regulated and five mature miRNAs were down-regulated in male gonads compared to female gonads, while 79 lncRNAs were up-regulated and 51 were down-regulated. These findings could highlight a group of interesting miRNAs and lncRNAs for future studies and may reveal new insights into the function of miRNAs and lncRNAs in sex determination and differentiation.

2020 ◽  
Vol 15 (7) ◽  
pp. 639-645 ◽  
Author(s):  
Ying Li ◽  
Jinglan Li ◽  
Leilei Chen ◽  
Liangliang Xu

The Human Genome Project (HGP) announced in 2001 that it had sequenced the entire human genome, yielding nearly complete human DNA. About 98.5 percent of the human genome has been found to be non-coding sequences. Long non-coding RNA (lncRNA) is a non-coding RNA with a length between 200 and 100,000 nucleotide units. Because of shallow research on lncRNA, it was believed that it had no biological functions, but exists as a by-product of the transcription process. With the development of high-throughput sequencing technology, studies have shown that lncRNA plays important roles in many processes by participating in epigenetics, transcription, translation and protein modification. Current researches have shown that lncRNA also has an important part in the pathogenesis of osteoporosis. Osteoporosis is a common disorder of bone metabolism, also a major medical and socioeconomic challenge worldwide. It is characterized by a systemic reduction in bone mass and microstructure changes, which increases the risk of brittle fractures. It is more common in postmenopausal women and elderly men. However, the roles of lncRNA and relevant mechanisms in osteoporosis remain unclear. Based on this background, we hereby review the roles of lncRNA in osteoporosis, and how it influences the functions of osteoblasts and osteoclasts, providing reference to clinical diagnosis, treatment and prognosis of osteoporosis.


2021 ◽  
Vol 11 (8) ◽  
pp. 1306-1312
Author(s):  
Li Song ◽  
Ningchao Du ◽  
Haitao Luo ◽  
Furong Li

This study aimed to identify the association of protein coding and long non coding RNA genes with immunotherapy response in melanoma. Based on RNA sequencing data of melanoma specimens, the expression levels of protein coding and long non coding RNA genes were calculated using the Kallisto RNA-seq quantification method, and differently expressed genes were detected using the DESeq2 method. Cox proportional hazards regression was used to evaluate the effects of gene expression on survival. According to the clinical data of 14 patients with drug response and 11 patients without drug response, 18 protein coding genes and 14 long non coding RNAs showed differential expressions (multiple of difference > 2 and P < 0.01 after correction), among which the coding genes of differential expression were significantly enriched through the process of cell adhesion (P < 0.01). The results of survival analysis showed that 18 coding genes and 14 long non coding RNA genes had significant effects on patient survival (P < 0.01). In this study, magnetic nanoparticles can be used to extract genomic DNA and total RNA due to their paramagnetism and biocompatibility, then transcriptome high-throughput sequencing was performed. The method has the advantages of removing dangerous reagents such as phenol and chloroform, replacing inorganic coating such as silica with organic oil, and shortening reaction time. Protein coding and long non coding RNA genes as well as magnetic nanoparticles may serve as potential cancer immune biomarker targets for developing future oncological treatments.


2018 ◽  
Author(s):  
G. Savary ◽  
M. Buscot ◽  
E. Dewaeles ◽  
S. Diazzi ◽  
N. Nottet ◽  
...  

AbstractGiven the paucity of effective treatments for fibrotic disorders, new insights into the deleterious mechanisms controlling fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Here, we identified the long non-coding RNA DNM3OS as a critical downstream effector of TGF-β-induced myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to 3 distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way, through two modes of action consisting of either signal amplification or mediation. Finally, we provide preclinical evidence that interfering with DNM3OS function using distinct strategies not only prevents lung and kidney fibrosis but also improves established lung fibrosis, providing thus a novel paradigm for the treatment of refractory fibrotic diseases such as idiopathic pulmonary fibrosis.One Sentence SummaryThe DNM3OS lncRNA is a reservoir of fibromiRs with major functions in fibroblast response to TGF-β and represents a valuable therapeutic target for refractory fibrotic diseases such as idiopathic pulmonary fibrosis (IPF).


2020 ◽  
Vol 34 ◽  
pp. 205873842097630
Author(s):  
Li Jiang ◽  
Mengmeng Zhang ◽  
Sixue Wang ◽  
Yuzhen Xiao ◽  
Jingni Wu ◽  
...  

The current study intended to explore the interaction of the long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) under the background of competitive endogenous RNA (ceRNA) network in endometriosis (EMs). The differentially expressed miRNAs (DEmiRs), differentially expressed lncRNA (DELs), and differentially expressed genes (DEGs) between EMs ectopic (EC) and eutopic (EU) endometrium based on three RNA-sequencing datasets (GSE105765, GSE121406, and GSE105764) were identified, which were used for the construction of ceRNA network. Then, DEGs in the ceRNA network were performed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analysis. Besides, the DEmiRs in the ceRNA network were validated in GSE124010. And the target DELs and DEGs of verified DEmiRs were validated in GSE86534. The correlation of verified DEmiRs, DEGs, and DELs was explored. Moreover, gene set enrichment analysis (GSEA) was applied to investigate the function of verified DEmiRs, DEGs, and DELs. Overall, 1352 DEGs and 595 DELs from GSE105764, along with 27 overlapped DEmiRs between GSE105765 and GSE121406, were obtained. Subsequently, a ceRNA network, including 11 upregulated and 16 downregulated DEmiRs, 7 upregulated and 13 downregulated DELs, 48 upregulated and 46 downregulated DEGs, was constructed. The GO and KEGG pathway analysis showed that this ceRNA network probably was associated with inflammation-related pathways. Furthermore, hsa-miR-182-5p and its target DELs (LINC01018 and SMIM25) and DEGs (BNC2, CHL1, HMCN1, PRDM16) were successfully verified in the validation analysis. Besides, hsa-miR-182-5p was significantly negatively correlated with these target DELs and DEGs. The GSEA analysis implied that high expression of LINC01018, SMIM25, and CHL1, and low expression of hsa-miR-182-5p would activate inflammation-related pathways in endometriosis EU samples. LINC01018 and SMIM25 might sponge hsa-miR-182-5p to upregulate downstream genes such as CHL1 to promote the development of endometriosis.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1374
Author(s):  
Yibing Liu ◽  
Ying Yu ◽  
Hong Ao ◽  
Fengxia Zhang ◽  
Xitong Zhao ◽  
...  

Adipose is an important body tissue in pigs, and fatty traits are critical in pig production. The function of long non-coding RNA (lncRNA) in fat deposition and metabolism has been found in previous studies. In this study, we collected the adipose tissue of six Landrace pigs with contrast backfat thickness (nhigh = 3, nlow = 3), after which we performed strand-specific RNA sequencing (RNA-seq) based on pooling and biological replicate methods. Biological replicate and pooling RNA-seq revealed 1870 and 1618 lncRNAs, respectively. Using edgeR, we determined that 1512 genes and 220 lncRNAs, 2240 genes and 127 lncRNAs were differentially expressed in biological replicate and pooling RNA-seq, respectively. After target gene prediction, we found that ACSL3 was cis-targeted by lncRNA TCONS-00052400 and could activate the conversion of long-chain fatty acids. In addition, lncRNA TCONS_00041740 cis-regulated gene ACACB regulated the rate-limiting enzyme in fatty acid oxidation. Since these genes have necessary functions in fat metabolism, the results imply that the lncRNAs detected in our study may affect backfat deposition in swine through regulation of their target genes. Our study explored the regulation of lncRNA and their target genes in porcine backfat deposition and provided new insights for further investigation of the biological functions of lncRNA.


2019 ◽  
Vol 286 (1910) ◽  
pp. 20191653 ◽  
Author(s):  
Shengru Wu ◽  
Wei Guo ◽  
Xinyi Li ◽  
Yanli Liu ◽  
Yulong Li ◽  
...  

Increasing evidence indicates that paternal diet can result in metabolic changes in offspring, but the definite mechanism remains unclear in birds. Here, we fed breeder cocks five different diets containing 0, 0.25, 1.25, 2.50 and 5.00 mg kg −1 folate throughout life. Paternal folate supplementation (FS) was beneficial to the growth and organ development of broiler offspring. Most importantly, the lipid and glucose metabolism of breeder cocks and broiler offspring were affected by paternal FS, according to biochemical and metabolomic analyses. We further employed global analyses of hepatic and spermatozoal messenger RNA (mRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA). Some key genes involved in the glycolysis or gluconeogenesis pathway and the PPAR signalling pathway, including PEPCK , ANGPTL4 and THRSP , were regulated by differentially expressed hepatic and spermatozoal miRNAs and lncRNAs in breeder cocks and broiler offspring. Moreover, the expression of ANGPTL4 could also be regulated by differentially expressed miRNAs and lncRNAs in spermatozoa via competitive endogenous RNA (ceRNA) mechanisms. Overall, this model suggests that paternal folate could transgenerationally regulate lipid and glucose metabolism in broiler offspring and the epigenetic transmission may involve altered spermatozoal miRNAs and lncRNAs.


2020 ◽  
Vol 21 (3) ◽  
pp. 911 ◽  
Author(s):  
Fan Yang ◽  
Dan Zhao ◽  
Haiyan Fan ◽  
Xiaofeng Zhu ◽  
Yuanyuan Wang ◽  
...  

Root-knot nematodes (RKNs) severely affect plants growth and productivity, and several commercial biocontrol bacteria can improve plants resistance to RKNs. Pseudomonas putida Sneb821 isolate was found to induce tomatoes resistance against Meloidogyne incognita. However, the molecular functions behind induced resistance remains unclear. Long non-coding RNA (lncRNA) is considered to be a new component that regulates the molecular functions of plant immunity. We found lncRNA was involved in Sneb821-induced tomato resistance to M. incognita. Compared with tomato inoculated with M. incognita, high-throughput sequencing showed that 43 lncRNAs were upregulated, while 35 lncRNAs were downregulated in tomatoes previously inoculated with Sneb821. A regulation network of lncRNAs was constructed, and the results indicated that 12 lncRNAs were found to act as sponges of their corresponding miRNAs. By using qRT-PCR and the overexpression vector pBI121, we found the expression of lncRNA44664 correlated with miR396/GRFs (growth-regulating factors) and lncRNA48734 was correlated with miR156/SPL (squamosal promoter-binding protein-like) transcription factors. These observations provided a novel molecular model in biocontrol bacteria-induced tomato resistance to M. incognita.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (7) ◽  
pp. e1002798 ◽  
Author(s):  
Takashi Kamiya ◽  
Wataru Kai ◽  
Satoshi Tasumi ◽  
Ayumi Oka ◽  
Takayoshi Matsunaga ◽  
...  

2019 ◽  
Author(s):  
Laurent Manchon ◽  
Audrey Vautrin ◽  
Jamal Tazi ◽  
Aude Garcel ◽  
Noelie Campos

AbstractMany nascent long non-coding RNAs have received considerable attention in recent years because of their major regulatory roles in gene expression and signaling pathways at various levels. Indeed long non-coding RNAs undergo the same maturation steps as pre-mRNAs of proteincoding genes, but they are less efficiently spliced and polyadenylated in comparison to them. Here we focus on a specific human long non-coding RNA and we show the activity of a new candidate drug that potentially affect its splicing and generate an anti-HIV and anti-inflammatory effects driven by upregulation of microRNA biogenesis. To investigate this activity we combine the use of capture sequencing technology and an ab initio transcript assembly on cells from six healthy individuals. The sequencing depth of capture sequencing permitted us to assemble transcripts exhibiting a complex array of splicing patterns. In essence, we revealed that splicing of the long non-coding RNA is activated by the drug whereas this splicing was not present in untreated samples.


2019 ◽  
Author(s):  
Xiuqin Hu ◽  
Jinkai Zhu ◽  
Guanjie Ji ◽  
Zhen Wang ◽  
Jie Xin

AbstractTrichosanthes kirilowii Maxim. (TK) is a dioecious plant in the Cucurbitaceae for which different sexes have separate medicinal uses. In order to study the genes related to sex determination, transcriptome sequencing was performed on flower buds and leaves of male and female plants using the high-throughput sequencing technology. A total of 145,975 unigenes and 7110 DEGs were obtained. There were 6776 DEGs annotated to 1234 GO terms and enriched to 18 functional groups, including five biological processes related to sugar metabolism. KEGG pathway analysis indicated genes involved in hormone transduction, hormone synthesis and carbohydrate metabolism. The sex determination genes of TK are different from known sex determination mechanisms (ACS11, ACS7(2), WIP1). Many DEGs of TK are involved in reproductive organ formation, hormone signal transduction and regulatory networks. In combination with the previous study of sex differentiation of Cucurbitaceae, the results of GO, KEGG and the expression of related genes in male and female plants, 18 candidate genes for sex determining of TK were screened from 151 hormone-related differentially expressed genes. The genes included MYB80, MYB108 and MYB21 of the MYB family, CER1, CBL, ABCB199, SERK1 and HSP81-3. The results provide a foundation for the study of sex differentiation in TK.


Sign in / Sign up

Export Citation Format

Share Document