Codon Usage of Expansin Genes in Populus trichocarpa

2017 ◽  
Vol 12 (5) ◽  
Author(s):  
Jian Li ◽  
Haoyang Li ◽  
Junkai Zhi ◽  
Chuzhao Shen ◽  
Xuesong Yang ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8251 ◽  
Author(s):  
Zhanjun Wang ◽  
Beibei Xu ◽  
Bao Li ◽  
Qingqing Zhou ◽  
Guiyi Wang ◽  
...  

Euphorbiaceae plants are important as suppliers of biodiesel. In the current study, the codon usage patterns and sources of variance in chloroplast genome sequences of six different Euphorbiaceae plant species have been systematically analyzed. Our results revealed that the chloroplast genomes of six Euphorbiaceae plant species were biased towards A/T bases and A/T-ending codons, followed by detection of 17 identical high-frequency codons including GCT, TGT, GAT, GAA, TTT, GGA, CAT, AAA, TTA, AAT, CCT, CAA, AGA, TCT, ACT, TAT and TAA. It was found that mutation pressure was a minor factor affecting the variation of codon usage, however, natural selection played a significant role. Comparative analysis of codon usage frequencies of six Euphorbiaceae plant species with four model organisms reflected that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae should be considered as suitable exogenous expression receptor systems for chloroplast genes of six Euphorbiaceae plant species. Furthermore, it is optimal to choose Saccharomyces cerevisiae as the exogenous expression receptor. The outcome of the present study might provide important reference information for further understanding the codon usage patterns of chloroplast genomes in other plant species.


1991 ◽  
Vol 83 (1) ◽  
pp. 136-143 ◽  
Author(s):  
L. Bray ◽  
D. Chriqui ◽  
K. Gloux ◽  
D. Le Rudulier ◽  
M. Meyer ◽  
...  

2019 ◽  
Vol 14 (7) ◽  
pp. 621-627 ◽  
Author(s):  
Youhuang Bai ◽  
Xiaozhuan Dai ◽  
Tiantian Ye ◽  
Peijing Zhang ◽  
Xu Yan ◽  
...  

Background: Long noncoding RNAs (lncRNAs) are endogenous noncoding RNAs, arbitrarily longer than 200 nucleotides, that play critical roles in diverse biological processes. LncRNAs exist in different genomes ranging from animals to plants. Objective: PlncRNADB is a searchable database of lncRNA sequences and annotation in plants. Methods: We built a pipeline for lncRNA prediction in plants, providing a convenient utility for users to quickly distinguish potential noncoding RNAs from protein-coding transcripts. Results: More than five thousand lncRNAs are collected from four plant species (Arabidopsis thaliana, Arabidopsis lyrata, Populus trichocarpa and Zea mays) in PlncRNADB. Moreover, our database provides the relationship between lncRNAs and various RNA-binding proteins (RBPs), which can be displayed through a user-friendly web interface. Conclusion: PlncRNADB can serve as a reference database to investigate the lncRNAs and their interaction with RNA-binding proteins in plants. The PlncRNADB is freely available at http://bis.zju.edu.cn/PlncRNADB/.


2012 ◽  
Vol 12 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Adam S. Lauring ◽  
Ashley Acevedo ◽  
Samantha B. Cooper ◽  
Raul Andino

Sign in / Sign up

Export Citation Format

Share Document