A Review of T-Splines Surfaces

2021 ◽  
Vol 15 ◽  
Author(s):  
Haojie Ren ◽  
Huahao Shou ◽  
Hongwei Lin

Background: Curved modeling technology is originated from the geometric lofting and designing of aircraft, automobiles, and ships. The control points of the traditional B-spline mesh should be placed regularly in rows and columns. A T-spline surface is a type of B-spline surface that allows T-junctions. It can overcome the limitations of traditional B-mesh topology and has its own advantages in surface splicing, surface fining, surface simplification, and so on. T-spline has wide application prospects in product modeling, art design, animation production, numerical control machining, volume data expression, and other aspects. Objective: The objective of this paper is to summarize the properties, algorithms, and applications of T-splines. It helps scholars in determining the research status of T-splines and further exploring the theories and applications of T-splines. Methods: This paper reviews the theories of T-splines and their applications from four aspects. First, we discuss the development of the concept, properties, algorithms, and reconstruction of the T-spline. Then, we conduct an isogeometric analysis using T-splines. Next, we demonstrate the applications of T-splines in actual scenarios. Finally, we present a brief summary of the paper and future expectations. Results: The paper provides a brief introduction of the relevant papers on T-splines. Currently, many studies have been carried out on theories and applications of T-spline. Among these, the spline theory on T-mesh has aroused widespread interest in engineering, especially in computer-aided geometric design (CAGD) and computer graphics. Conclusion: The T-spline surface is the most important new spline surface in the CADG field since the creation of the B-spline surface and non-uniform rational B-spline surface. Although the surface modeling technology based on the T-spline surface is developing rapidly, there are still some problems that need to be further studied.

2012 ◽  
Vol 546-547 ◽  
pp. 767-771 ◽  
Author(s):  
Xia Xie ◽  
Ai Fen Xu ◽  
Xue Cheng Lu ◽  
Bin Wang

In this paper, the concept, development status and trend of NC machining simulation technology were reviewed and its four key technologies were emphatically introduced, which were geometric modeling technology, NC code translation, entity collision detection and the material removal process simulation respectively.


2011 ◽  
Vol 1 ◽  
pp. 262-267
Author(s):  
Ji Zhuang Hui ◽  
Yan Ma ◽  
Ze Feng Liu

In order to meet the needs of high speed and high precision computerized numerical control machining, a calculation based on the control of contour error and feeding acceleration for the real-time interpolation of Non-uniform rational B-spline (NURBS) curves was presented in this paper. On the premise of meeting the error requirement, machine can process parts with the highest feeding speed to achieve interpolation precision and interpolation speed optimization, and improve processing quality and efficiency.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1054
Author(s):  
Rozaimi Zakaria ◽  
Abd. Fatah Wahab ◽  
Isfarita Ismail ◽  
Mohammad Izat Emir Zulkifly

This paper discusses the construction of a type-2 fuzzy B-spline model to model complex uncertainty of surface data. To construct this model, the type-2 fuzzy set theory, which includes type-2 fuzzy number concepts and type-2 fuzzy relation, is used to define the complex uncertainty of surface data in type-2 fuzzy data/control points. These type-2 fuzzy data/control points are blended with the B-spline surface function to produce the proposed model, which can be visualized and analyzed further. Various processes, namely fuzzification, type-reduction and defuzzification are defined to achieve a crisp, type-2 fuzzy B-spline surface, representing uncertainty complex surface data. This paper ends with a numerical example of terrain modeling, which shows the effectiveness of handling the uncertainty complex data.


Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
SS Pande

This paper reports a novel method to generate adaptive spiral tool path for the CNC machining of complex sculptured surface represented in the form of cloud of points without the need for surface fitting. The algorithm initially uses uniform 2 D circular mesh-grid to compute the cutter location (CL) points by applying the tool inverse offset method (IOM). These CL points are refined adaptively till the surface form errors converge below the prescribed tolerance limits in both circumferential and radial directions. They are further refined to eliminate the redundancy in machining and generate optimum region wise tool path to minimize the tool lifts. The NC part programs generated by our algorithm were widely tested for different case studies using the commercial CNC simulator as well as by the actual machining trial. Finally, a comparative study was done between our developed system and the commercial CAM software. The results showed that our system is more efficient and robust in terms of the obtained surface quality, productivity, and memory requirement.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


Author(s):  
Yuan Yuan ◽  
Shiyu Zhou

B-spline surfaces are widely used in engineering practices as a flexible and efficient mathematical model for product design, analysis, and assessment. In this paper, we propose a new sequential B-spline surface construction procedure using multiresolution measurements. At each iterative step of the proposed procedure, we first update knots vectors based on bias and variance decomposition of the fitting error and then incorporate new data into the current surface approximation to fit the control points using Kalman filtering technique. The asymptotical convergence property of the proposed procedure is proved under the framework of sieves method. Using numerical case studies, the effectiveness of the method under finite sample is tested and demonstrated.


Sign in / Sign up

Export Citation Format

Share Document