scholarly journals Some Calcareous Nannofossils from the Upper Jurassic-Lower Cretaceous Bazhenov Formation of the West Siberian Marine Basin, Russia

2012 ◽  
Vol 6 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Yuri N. Zanin
2017 ◽  
pp. 34-43
Author(s):  
E. E. Oksenoyd ◽  
V. A. Volkov ◽  
E. V. Oleynik ◽  
G. P. Myasnikova

Based on pyrolytic data (3 995 samples from 208 wells) organic matter types of Bazhenov Formation are identified in the central part of Western Siberian basin. Zones of kerogen types I, II, III and mixed I-II and II-III are mapped. Content of sulfur, paraffins, resins and asphaltenes, viscosity, density, temperature and gas content in oils from Upper Jurassic and Lower Cretaceous sediments (3 806 oil pools) are mapped. Oil gradations are identified and distributed. The alternative model of zones of kerogen II and IIS types is presented. The established distributions of organic matter types can be used in basin modeling and in assessment of oil-and-gas bearing prospects.


1959 ◽  
Vol S7-I (8) ◽  
pp. 803-808
Author(s):  
Vladimir Stchepinsky

Abstract Upper Jurassic (Kimeridgian and Portlandian) and lower Cretaceous formations crop out in the area south of Bar-le-Duc, France. In contrast to the fractured area to the west, this area is a solid block. The relatively unimportant Veel-Combles fault is related to the Marne double fault, despite its isolation. An east-west fault, 20 kilometers long with a southward throw of 10 meters, can also be traced. The paleogeographic evolution of the area during the Mesozoic is outlined.


Author(s):  
Cees J.L. Willems ◽  
Andrea Vondrak ◽  
Harmen F. Mijnlieff ◽  
Marinus E. Donselaar ◽  
Bart M.M. van Kempen

Abstract In the past 10 years the mature hydrocarbon province the West Netherlands Basin has hosted rapidly expanding geothermal development. Upper Jurassic to Lower Cretaceous strata from which gas and oil had been produced since the 1950s became targets for geothermal exploitation. The extensive publicly available subsurface data including seismic surveys, several cores and logs from hundreds of hydrocarbon wells, combined with understanding of the geology after decades of hydrocarbon exploitation, facilitated the offtake of geothermal exploitation. Whilst the first geothermal projects proved the suitability of the permeable Upper Jurassic to Lower Cretaceous sandstones for geothermal heat production, they also made clear that much detail of the aquifer geology is not yet fully understood. The aquifer architecture varies significantly across the basin because of the syn-tectonic sedimentation. The graben fault blocks that contain the geothermal targets experienced a different tectonic history compared to the horst and pop-up structures that host the hydrocarbon fields from which most subsurface data are derived. Accurate prediction of the continuity and thickness of aquifers is a prerequisite for efficient geothermal well deployment that aims at increasing heat recovery while avoiding the risk of early cold-water breakthrough. The potential recoverable heat and the current challenges to enhance further expansion of heat exploitation from this basin are evident. This paper presents an overview of the current understanding and uncertainties of the aquifer geology of the Upper Jurassic to Lower Cretaceous strata and discusses new sequence-stratigraphic updates of the regional sedimentary aquifer architecture.


Geosphere ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 82-110 ◽  
Author(s):  
Jeffrey M. Trop ◽  
Jeffrey A. Benowitz ◽  
Donald Q. Koepp ◽  
David Sunderlin ◽  
Matthew E. Brueseke ◽  
...  

Abstract The Nutzotin basin of eastern Alaska consists of Upper Jurassic through Lower Cretaceous siliciclastic sedimentary and volcanic rocks that depositionally overlie the inboard margin of Wrangellia, an accreted oceanic plateau. We present igneous geochronologic data from volcanic rocks and detrital geochronologic and paleontological data from nonmarine sedimentary strata that provide constraints on the timing of deposition and sediment provenance. We also report geochronologic data from a dike injected into the Totschunda fault zone, which provides constraints on the timing of intra–suture zone basinal deformation. The Beaver Lake formation is an important sedimentary succession in the northwestern Cordillera because it provides an exceptionally rare stratigraphic record of the transition from marine to nonmarine depositional conditions along the inboard margin of the Insular terranes during mid-Cretaceous time. Conglomerate, volcanic-lithic sandstone, and carbonaceous mudstone/shale accumulated in fluvial channel-bar complexes and vegetated overbank areas, as evidenced by lithofacies data, the terrestrial nature of recovered kerogen and palynomorph assemblages, and terrestrial macrofossil remains of ferns and conifers. Sediment was eroded mainly from proximal sources of upper Jurassic to lower Cretaceous igneous rocks, given the dominance of detrital zircon and amphibole grains of that age, plus conglomerate with chiefly volcanic and plutonic clasts. Deposition was occurring by ca. 117 Ma and ceased by ca. 98 Ma, judging from palynomorphs, the youngest detrital ages, and ages of crosscutting intrusions and underlying lavas of the Chisana Formation. Following deposition, the basin fill was deformed, partly eroded, and displaced laterally by dextral displacement along the Totschunda fault, which bisects the Nutzotin basin. The Totschunda fault initiated by ca. 114 Ma, as constrained by the injection of an alkali feldspar syenite dike into the Totschunda fault zone. These results support previous interpretations that upper Jurassic to lower Cretaceous strata in the Nutzotin basin accumulated along the inboard margin of Wrangellia in a marine basin that was deformed during mid-Cretaceous time. The shift to terrestrial sedimentation overlapped with crustal-scale intrabasinal deformation of Wrangellia, based on previous studies along the Lost Creek fault and our new data from the Totschunda fault. Together, the geologic evidence for shortening and terrestrial deposition is interpreted to reflect accretion/suturing of the Insular terranes against inboard terranes. Our results also constrain the age of previously reported dinosaur footprints to ca. 117 Ma to ca. 98 Ma, which represent the only dinosaur fossils reported from eastern Alaska.


Geochemistry ◽  
2010 ◽  
Vol 70 (4) ◽  
pp. 363-376 ◽  
Author(s):  
Yuri N. Zanin ◽  
Vika G. Eder ◽  
Al’bina G. Zamirailova ◽  
Vladimir O. Krasavchikov

Sign in / Sign up

Export Citation Format

Share Document