marine basin
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 29)

H-INDEX

30
(FIVE YEARS 3)

Géotechnique ◽  
2021 ◽  
pp. 1-41
Author(s):  
Francesca Sollecito ◽  
Michael Plötze ◽  
Alexander M. Puzrin ◽  
Claudia Vitone ◽  
Daniela Miccoli ◽  
...  

A detailed multi-scale investigation of the geotechnical, chemical and mineralogical properties was conducted on contaminated sediment samples collected within the Mar Piccolo, a marine basin in south of Italy. The basin is located close to one of the most important industrial sites in Europe also declared ‘at high risk of environmental crisis’ and prioritised for remediation activities. A multidisciplinary investigation campaign showed that the samples collected close to the seafloor are characterized by high values of both heavy metals and organic pollutants and by the presence of significant amount of organic matter. Several samples in the top layer exhibited peculiar geotechnical properties, in terms of plasticity and activity indexes, compressibility and hydraulic permeability. While the prime suspect for such unconventional behaviour was the chemo-mechanical coupling between soil skeleton and contaminants, it turned out that the biogeochemical degradation of organic matter and the presence of microfossils and diatoms is likely to affect significantly the micro to macro behaviour of polluted marine sediments.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2267
Author(s):  
Alexandros Varesis ◽  
George Anastasakis

This study investigates the interplay of evolving tectonic and submarine sedimentation processes in the northwest Aegean Sea using marine multichannel seismic profiles. We identify an extensive basin developing in the Thermaikos Gulf inner shelf, outer shelf, and slope leading to the 1500 m deep West North Aegean Trough (NAT). We establish the unconformable extent of Eocene and Oligocene sequences on the upper shelf and trace their continuation in the deeper shelf and slope of Thermaikos Gulf. The start of the Miocene and Middle Miocene developed below the well-established Messinian bounding reflectors that are mostly erosional. Important lateral variations are observed within the Messinian sequence, which is up to 0.8 s thick. Messinian prograding clinoforms are identified on the Thermaikos Gulf shelf and southeast of Chalkidiki, and a zone of irregular reflectors is attributed to the Messinian salt layer. The transpressional deformation of the Messinian in the southwestern margin constrains the timing of westward progradation of the North Anatolian Fault during Messinian. The Pliocene-Quaternary sediments are 0.6–1.8 s thick, showing the overwhelming effect of tectonics on sedimentation plus the northwards Quaternary activation at the Thermaikos apron.


2021 ◽  
pp. 1943-1955
Author(s):  
Ahmed Muslim Khawaja ◽  
Jassim Muhammad Thabit

In this paper, we attempt to predict the depositional environments with associated lithofacies of the main reservoir of the late Cretaceous Mishrif carbonate Formation, depending on the analysis of the created seismic isopach map by integrating seismic and well data. The isopach map was created from a 3D-seismic reflection survey carried out at the Dujaila oil field in southeastern Iraq, which is of an area of 602.26 Km2, and integrated with the data of the two explored wells. Based on the interpretation of the seismic isopach map, the diagram of the 3D-depositional environment model of Mishrif Formation was constructed. It showed three distinguished depositional environments, which were graduated from a back reef lithofacies of a shallow open marine (shelf) environment in the west and NW, to a shoal environment of isolated Rudist reefal buildup in the middle, and a fore reef lithofacies of the deep open marine basin environment in the SE of the field. A 3D-instantaneous frequency model was generated to verify the capability of the seismic isopach map of predicting the depositional environments, which in turn showed that the low frequency was restricted in the region of the high thickness of Rudist reefal buildups (porous reservoir facies) in the vicinity of the productive well Dujaila-1.


2021 ◽  
Author(s):  
Stefan Markus Schmalholz ◽  
Lorenzo Candioti ◽  
Joshua Vaughan-Hammon ◽  
Thibault Duretz

<p>Subduction zones are one of the main features of plate tectonics, they are essential for geochemical cycling and are often a key player during mountain building. However, several processes related to subduction zones remain elusive, such as the initiation of subduction or the exhumation of (ultra)high-pressure rocks.</p><p>Collision orogens, such as the European Alps or Himalayas, provide valuable insight into long-term subduction zone processes and the larger geodynamic cycles of plate extension and subsequent convergence. For the Alps, geological reconstructions suggest a horizontally forced subduction initiation caused by the onset of convergence between the Adriatic and European plates. During Alpine orogeny, the Piemont-Liguria basin and the European passive magma-poor margin (including the Briançonnais domain) were subducted below Adria. The petrological rock record indicates burial and subsequent exhumation of both continental and oceanic crustal rocks that were exposed to (ultra)high-pressure metamorphic conditions during their Alpine burial-exhumation cycle. Moreover, estimates of exhumation velocities yield magnitudes in the range of several mm/yr to several cm/yr. However, published estimates of exhumation velocities, ages of peak metamorphic conditions and estimates for peak pressure and peak temperature vary partly significantly, even for the same tectonic unit. Consequently, many, partly significantly, contrasting conceptual models for subduction initiation (convergence versus buoyancy driven) or rock exhumation (channel-flow, diapirism, episodic regional extension, erosion etc.) have been proposed for the Alps. </p><p>Complementary to the data-driven approach, mathematical models of the lithosphere and upper mantle system are useful tools to investigate geodynamic processes. These mathematical models integrate observational and experimental data with the fundamental laws of physics (e.g. conservation of mass, momentum and energy) and are useful to test conceptual models of subduction initiation and rock exhumation. Here, we present numerical solutions of two-dimensional petrological-thermo-mechanical models. The initial model configuration consists of an isostatically and thermally equilibrated lithosphere, which includes mechanical heterogeneities in the form of elliptical regions with different effective viscosity. We model a continuous geodynamic cycle of subsequent extension, no far-field deformation and convergence. During extension, the continental crust is necked, separated and mantle is exhumed, forming a marine basin bounded by passive margins. During the subsequent stage with no far-field deformation, the thermal field of the lithosphere is re-equilibrated above a convecting mantle. During convergence, subduction is initiated at one passive margin and the mantle lithosphere below the marine basin as well as the other passive margin are subducted. During progressive subduction, parts of the subducted continental upper crust are sheared-off the subducting plate and are exhumed to the surface, ultimately forming an orogenic wedge. For the convergence, we test the impact of serpentinites at the top of the exhumed mantle on orogenic wedge formation. We compare the model results with observational and experimental constraints, discuss the involved processes and driving forces and propose a model for subduction initiation and (ultra)high-pressure rock exhumation for the Alps.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 38
Author(s):  
George E. Mustoe ◽  
Graham Beard

Calcite-mineralized wood occurs in marine sedimentary rocks on Vancouver Island, British Columbia at sites that range in age from Early Cretaceous to Paleocene. These fossil woods commonly have excellent anatomical preservation that resulted from a permineralization process where calcite infiltrated buried wood under relatively gentle geochemical conditions. Wood specimens typically occur in calcareous concretions in feldspathic clastic sediment. Other concretions in the same outcrops that contain abundant mollusk and crustacea fossils are evidence that plant remains were fluvially transported into a marine basin. Fossiliferous concretions commonly show zoning, comprising an inner region of progressive precipitation where calcite cement developed as a concentric halo around the organic nucleus. An outer zone was produced by pervasive cementation, which was produced when calcite was simultaneously precipitated in pore spaces over the entire zone.


2021 ◽  
Author(s):  
Olga Zygadlowska ◽  
Wytze Lenstra ◽  
Niels van Helmond ◽  
Thomas Röckmann ◽  
Jessica Venetz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document