scholarly journals Influence of Infill Panels and their Distribution on Seismic Behavior of Existing Reinforced Concrete Buildings

2012 ◽  
Vol 6 (1) ◽  
pp. 236-253 ◽  
Author(s):  
Gaetano Manfredi
2020 ◽  
Vol 24 (2) ◽  
pp. 580-595
Author(s):  
Eric Forcael ◽  
Guillermo Young ◽  
Alexander Opazo ◽  
Carlos Rodríguez ◽  
Arnaldo Bayona

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Abdelkader Nour ◽  
Abdelkader Benanane ◽  
Humberto Varum

The multiple earthquakes have proved the effect of chained masonry walls on the seismic behavior of multistoried reinforced concrete buildings. The chained masonry walls have been considered one of the types of masonry infill walls but without gaps. This participation came intending to study this effect through the modeling of several two-dimensional frames for a multistoried reinforced concrete building, taking into account the hollow brick walls, which represent the most common type in Algeria. We analyzed the proposed models using ETABS finite element software, relying on the response spectrum method and respecting the most important requirements according to the applicable Algerian Seismic Code. After analysis of the different models, the results have been compared according to the parameters of the period, base shear, lateral displacement, and stiffness. Through a critical synthesis of the results, we concluded that these walls could significantly affect the seismic behavior of this type of buildings. Moreover, the neglect of these walls in the modeling process can lead designers to have a false perception of the behavior of these buildings towards seismic loadings.    


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Victor Baca ◽  
Juan Bojórquez ◽  
Edén Bojórquez ◽  
Herian Leyva ◽  
Alfredo Reyes-Salazar ◽  
...  

The control of vibrations and damage in traditional reinforced concrete (RC) buildings under earthquakes is a difficult task. It requires the use of innovative devices to enhance the seismic behavior of concrete buildings. In this paper, we design RC buildings with buckling restrained braces (BRBs) to achieve this objective. For this aim, three traditional RC framed structures with 3, 6, and 9 story levels are designed by using the well-known technique nondominated sorting genetic algorithm (NSGA-II) in order to reduce the cost and maximize the seismic performance. Then, equivalent RC buildings are designed but including buckling restrained braces. Both structural systems are subjected to several narrow-band ground motions recorded at soft soil sites of Mexico City scaled at different levels of intensities in terms of the spectral acceleration at first mode of vibration of the structure Sa(T1). Then, incremental dynamic analysis, seismic fragility, and structural reliability in terms of the maximum interstory drift are computed for all the buildings. For the three selected structures and the equivalent models with BRBs, it is concluded that the annual rate of exceedance is considerably reduced when BRBs are incorporated. For this reason, the structural reliability of the RC buildings with BRBs has a better behavior in comparison with the traditional reinforced concrete buildings. The use of BRBs is a good option to improve strength and seismic behavior and hence the structural reliability of RC buildings subjected to strong earthquake ground motions.


2021 ◽  
Vol 11 (18) ◽  
pp. 8691
Author(s):  
Juan Carlos Vielma ◽  
Roberto Aguiar ◽  
Carlos Frau ◽  
Abel Zambrano

On 16 April 2016, an earthquake of Mw 7.8 shook the coast of Ecuador, causing the destruction of buildings and a significant number of casualties. Following a visit by the authors to the city of Portoviejo during the debris removal and recovery stage, it was noted that several reinforced concrete buildings located on corners had collapsed in the central part of the city. These buildings were characterized by the presence of masonry at the edges of the buildings but not between the two mostly open-plan facades on the corner for practical reasons. This article reviews the effect of masonry infill panels on the seismic response of reinforced concrete structures. For this, a model that contains the geometric and mechanical characteristics typical of collapsed buildings was generated and subjected to nonlinear analysis, with both static and dynamic increments. The results show the clear influence of the masonry infill panels on the structural response through the torsional behavior that is reflected in the evolution of the floor rotations. Finally, dynamic incremental analysis is used to obtain the collapse fragility curve of the building, and a new damage measure based on floor rotations is proposed.


Sign in / Sign up

Export Citation Format

Share Document