Robotic Path Planning Using Flower Pollination Algorithm

2020 ◽  
Vol 13 (2) ◽  
pp. 191-199
Author(s):  
Ishita Mehta ◽  
Geetika Singh ◽  
Yogita Gigras ◽  
Anuradha Dhull ◽  
Priyanka Rastogi

Background: Robotic path planning is an important facet of robotics. Its purpose is to make robots move independently in their work environment from a source to a destination whilst satisfying certain constraints. Constraint conditions are as follows: avoiding collision with obstacles, staying as far as possible from the obstacles, traversing the shortest path, taking minimum time, consuming minimum energy and so on. Hence, the robotic path planning problem is a conditional constraint optimization problem. Methods: To overcome this problem, the Flower Pollination Algorithm, which is a metaheuristic approach is employed. The effectiveness of Flower Pollination Algorithm is showcased by using diverse maps. These maps are composed of several fixed obstacles in different positions, a source and a target position. Initially, the pollinators carrying pollen (candidate solutions) are at the source location. Subsequently, the pollinators must pave a way towards the target location while simultaneously averting any obstacles that are encountered enroute. The pollinators should also do so with the minimum cost possible in terms of distance. The performance of the algorithm in terms of CPU time is evaluated. Flower Pollination Algorithm was also compared to the Particle Swarm Optimization algorithm and Ant Colony Optimization algorithm. Results: It was observed that Flower Pollination Algorithm is faster than Particle Swarm Optimization and Ant Colony Optimization in terms of CPU time for the same number of iterations to find an optimized solution for robotic path planning. Conclusion: The Flower Pollination Algorithm can be effectively applied for solving robotic path planning problem with static obstacles.

2019 ◽  
Vol 16 (4) ◽  
pp. 172988141985908 ◽  
Author(s):  
Peng Chen ◽  
Qing Li ◽  
Chao Zhang ◽  
Jiarui Cui ◽  
Hao Zhou

Robots are coming to help us in different harsh environments such as deep sea or coal mine. Waste landfill is the place like these with casualty risk, gas poisoning, and explosion hazards. It is reasonable to use robots to fulfill tasks like burying operation, transportation, and inspection. In these assignments, one important issue is to obtain appropriate paths for robots especially in some complex applications. In this context, a novel hybrid swarm intelligence algorithm, ant colony optimization enhanced by chaos-based particle swarm optimization, is proposed in this article to deal with the path planning problem for landfill inspection robots in Asahikawa, Japan. In chaos-based particle swarm optimization, Chebyshev chaotic sequence is used to generate the random factors for particle swarm optimization updating formula so as to effectively adjust particle swarm optimization parameters. This improved model is applied to optimize and determine the hyper parameters for ant colony optimization. In addition, an improved pheromone updating strategy which combines the global asynchronous feature and “Elitist Strategy” is employed in ant colony optimization in order to use global information more appropriately. Therefore, the iteration number of ant colony optimization invoked by chaos-based particle swarm optimization can be reduced reasonably so as to decrease the search time effectively. Comparative simulation experiments show that the chaos-based particle swarm optimization-ant colony optimization has a rapid search speed and can obtain solutions with similar qualities.


Author(s):  
Masakazu Kobayashi ◽  
Higashi Masatake

A robot path planning problem is to produce a path that connects a start configuration and a goal configuration while avoiding collision with obstacles. To obtain a path for robots with high degree of freedom of motion such as an articulated robot efficiently, sampling-based algorithms such as probabilistic roadmap (PRM) and rapidly-exploring random tree (RRT) were proposed. In this paper, a new robot path planning method based on Particle Swarm Optimization (PSO), which is one of heuristic optimization methods, is proposed in order to improve efficiency of path planning for a wider range of problems. In the proposed method, a group of particles fly through a configuration space while avoiding collision with obstacles and a collection of their trajectories is regarded as a roadmap. A velocity of each particle is updated for every time step based on the update equation of PSO. After explaining the details of the proposed method, this paper shows the comparisons of efficiency between the proposed method and RRT for 2D maze problems and then shows application of the proposed method to path planning for a 6 degree of freedom articulated robot.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chen Huang

This paper proposed an improved particle swarm optimization (PSO) algorithm to solve the three-dimensional problem of path planning for the fixed-wing unmanned aerial vehicle (UAV) in the complex environment. The improved PSO algorithm (called DCA ∗ PSO) based dynamic divide-and-conquer (DC) strategy and modified A ∗ algorithm is designed to reach higher precision for the optimal flight path. In the proposed method, the entire path is divided into multiple segments, and these segments are evolved in parallel by using DC strategy, which can convert the complex high-dimensional problem into several parallel low-dimensional problems. In addition, A ∗ algorithm is adopted to generated an optimal path from the particle swarm, which can avoid premature convergence and enhance global search ability. When DCA ∗ PSO is used to solve the large-scale path planning problem, an adaptive dynamic strategy of the segment selection is further developed to complete an effective variable grouping according to the cost. To verify the optimization performance of DCA ∗ PSO algorithm, the real terrain data is utilized to test the performance for the route planning. The experiment results show that the proposed DCA ∗ PSO algorithm can effectively obtain better optimization results in solving the path planning problem of UAV, and it takes on better optimization ability and stability. In addition, DCA ∗ PSO algorithm is proved to search a feasible route in the complex environment with a large number of the waypoints by the experiment.


Author(s):  
Yongquan Zhou ◽  
Rui Wang

Path planning of Unmanned Undersea Vehicle (UUV) is a rather complicated global optimum problem which is about seeking a superior sailing route considering the different kinds of constrains under complex combat field environment. Flower pollination algorithm (FPA) is a new optimization method motivated by flower pollination behavior. In this paper, a variant of FPA is proposed to solve the UUV path planning problem in two-dimensional (2D) and three-dimensional (3D) space. Optimization strategies of particle swarm optimization are applied to the local search process of IFPA to enhance its search ability. In the progress of iteration of this improved algorithm, a dimension by dimension based update and evaluation strategy on solutions is used. This new approach can accelerate the global convergence speed while preserving the strong robustness of standard FPA. The realization procedure for this improved flower pollination algorithm is also presented. To prove the performance of this proposed method, it is compared with nine population-based algorithms. The experiment result shows that the proposed approach is more effective and feasible in UUV path planning in 2D and 3D space.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 255
Author(s):  
Shuang Xia ◽  
Xiangyin Zhang

This paper considered the constrained unmanned aerial vehicle (UAV) path planning problem as the multi-objective optimization problem, in which both costs and constraints are treated as the objective functions. A novel multi-objective particle swarm optimization algorithm based on the Gaussian distribution and the Q-Learning technique (GMOPSO-QL) is proposed and applied to determine the feasible and optimal path for UAV. In GMOPSO-QL, the Gaussian distribution based updating operator is adopted to generate new particles, and the exploration and exploitation modes are introduced to enhance population diversity and convergence speed, respectively. Moreover, the Q-Learning based mode selection logic is introduced to balance the global search with the local search in the evolution process. Simulation results indicate that our proposed GMOPSO-QL can deal with the constrained UAV path planning problem and is superior to existing optimization algorithms in terms of efficiency and robustness.


Sign in / Sign up

Export Citation Format

Share Document