Green Bio-Based Solvents in C-C Cross-Coupling Reactions

2019 ◽  
Vol 6 (2) ◽  
pp. 96-104 ◽  
Author(s):  
Magne O. Sydnes

Solvent accounts for majority of the waste derived from synthetic transformations. This implies that by making changes to the solvent used by either switching to greener options, reducing the volume of solvent used, or even better avoiding the use of solvent totally will have a positive impact on the environment. Herein, the focus will be on the use of bio-based-green-solvents in C-C crosscoupling reactions highlighting the recent developments in this field of research. Emphasis in this review will be placed on developments obtained for Mizoroki-Heck, Hiyama, Stille, and Suzuki- Miyaura cross-couplings. For these cross-coupling reactions, good reaction conditions utilizing green solvents are now available.

2020 ◽  
Vol 23 (28) ◽  
pp. 3137-3153 ◽  
Author(s):  
Sankuviruthiyil M. Ujwaldev ◽  
K. R. Rohit ◽  
Sankaran Radhika ◽  
Gopinathan Anilkumar

: Transition metal catalyzed cross-coupling reactions have always been very important in synthetic organic chemistry due to their versatility in forming all sorts of carbon-carbon and carbon-hetero atom bonds. Incorporation of ultrasound assistance to these protocols resulted in milder reaction conditions, faster reaction rates, etc. This review focuses on the contributions made by ultrasound-assisted protocols towards transition metal catalyzed crosscoupling reactions.


2020 ◽  
Author(s):  
Shun Wang ◽  
Hua Wang ◽  
Burkhard Koenig

Cross-coupling reactions are essential tools in modern synthesis of drugs, natural products and materials. The recent developments in photocatalytic radical generation have improved and expanded the classic metal-catalyzed cross coupling reactions even further. However, for sp<sup>2</sup> cross coupling reactions aryl halides or related active leaving groups, such as triflates, are required. Substituted arenes bearing strong C-X bonds remain inert to current methods. We describe now a new thiolate photocatalysis for the activation of inert substituted arenes in ipso-borylation reactions. This catalytic system exhibits strong reducing power and allows the borylation of stable C<sub>aryl</sub>−F, C<sub>aryl</sub>−O, C<sub>aryl</sub>-N and C<sub>aryl</sub>−S bonds, which are considered as chemically stable at mild reaction conditions. Our method considerably widens the available substrate scope of aryl radical precursors and we anticipate that this report will inspire new chemistry based on inert chemical bond activation.


2020 ◽  
Author(s):  
Shun Wang ◽  
Hua Wang ◽  
Burkhard Koenig

Cross-coupling reactions are essential tools in modern synthesis of drugs, natural products and materials. The recent developments in photocatalytic radical generation have improved and expanded the classic metal-catalyzed cross coupling reactions even further. However, for sp<sup>2</sup> cross coupling reactions aryl halides or related active leaving groups, such as triflates, are required. Substituted arenes bearing strong C-X bonds remain inert to current methods. We describe now a new thiolate photocatalysis for the activation of inert substituted arenes in ipso-borylation reactions. This catalytic system exhibits strong reducing power and allows the borylation of stable C<sub>aryl</sub>−F, C<sub>aryl</sub>−O, C<sub>aryl</sub>-N and C<sub>aryl</sub>−S bonds, which are considered as chemically stable at mild reaction conditions. Our method considerably widens the available substrate scope of aryl radical precursors and we anticipate that this report will inspire new chemistry based on inert chemical bond activation.


2004 ◽  
Vol 82 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Richard W Friesen ◽  
Laird A Trimble

4,7-Dichloroquinoline (1a) and 7-chloro-4-iodoquinoline (1b) undergo Suzuki cross-coupling reactions with arylboronic acids catalyzed by phosphine-free palladium acetate in boiling water. Using phenylboronic acid (2), the reaction of 1a provides 7-chloro-4-phenylquinoline (3) (78%) together with diphenylquinoline (4) (12%), while 1b reacts in a much more regioselective fashion and provides 3 in 98% isolated yield. Although 1b undergoes a more regioselective Suzuki reaction than 1a, additional important observations are that the overall reaction of 1b with 2 is three times slower than 1a and that the reaction occurs in the absence of tetrabutylammonium bromide. Using optimized reaction conditions, a variety of aryl and vinylboronic acids undergo regioselective Suzuki cross-coupling with 1b to provide the products 7, 10, and 11 in good to excellent yield.Key words: palladium, cross-coupling, regioselectivity, quinolines, boronic acids.


2018 ◽  
Vol 14 ◽  
pp. 1871-1884 ◽  
Author(s):  
Siva Sankar Murthy Bandaru ◽  
Darinka Dzubiel ◽  
Heiko Ihmels ◽  
Mohebodin Karbasiyoun ◽  
Mohamed M A Mahmoud ◽  
...  

9-Arylbenzo[b]quinolizinium derivatives were prepared with base-free Suzuki–Miyaura coupling reactions between benzo[b]quinolizinium-9-trifluoroborate and selected benzenediazonium salts. In addition, the Sonogashira coupling reaction between 9-iodobenzo[b]quinolizinium and the arylalkyne derivatives yielded four novel 9-(arylethynyl)benzo[b]quinolizinium derivatives under relatively mild reaction conditions. The 9-(N,N-dimethylaminophenylethynyl)benzo[b]quinolizinium is only very weakly emitting, but the emission intensity increases by a factor >200 upon protonation, so that this derivative may operate as pH-sensitive light-up probe. Photometric and fluorimetric titrations of duplex and quadruplex DNA to 9-(arylethynyl)benzo[b]quinolizinium derivatives revealed a significant binding affinity of these compounds towards both DNA forms with binding constants ofKb= 0.2–2.2 × 105M−1.


Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


RSC Advances ◽  
2015 ◽  
Vol 5 (41) ◽  
pp. 32675-32678 ◽  
Author(s):  
Amrutha P. Thankachan ◽  
K. S. Sindhu ◽  
K. Keerthi Krishnan ◽  
Gopinathan Anilkumar

The first Zn-catalyzed protocol for C–S cross-coupling reactions for the synthesis of substituted aryl and alkyl sulfides with good yields under mild reaction conditions is described.


2018 ◽  
Vol 16 (37) ◽  
pp. 8267-8272 ◽  
Author(s):  
S. N. Murthy Boddapati ◽  
Chandra Mohan Kurmarayuni ◽  
Baby Ramana Mutchu ◽  
Ramana Tamminana ◽  
Hari Babu Bollikolla

Substituted 2-aminophenyl benzothiazoles have been constructed from thiourea via copper-catalyzed desulfurization/nucleophilic substitution followed by domino intra- and intermolecular C–N cross-coupling reactions under moderate reaction conditions.


Sign in / Sign up

Export Citation Format

Share Document