A Method for Precise Extraction of EEG Rhythmic Activities Using Multivariate Empirical Mode Decomposition and the Hilbert Transform

2014 ◽  
Vol 1 (2) ◽  
pp. 153-162
Author(s):  
Hirokazu Kawaguchi ◽  
Tetsuo Kobayashi
2011 ◽  
Vol 255-260 ◽  
pp. 1676-1680
Author(s):  
Tian Li Huang ◽  
Wei Xin Ren ◽  
Meng Lin Lou

A non-linear dynamical system identification method using Hilbert transform (HT) and empirical mode decomposition (EMD) is proposed. For a single-degree-of-freedom (SDOF) nonlinear system, the Hilbert transform identification method is good at identifying the instantaneous modal parameters (natural frequencies, damping characteristics and their dependencies on a vibration amplitude and frequency). For the multi-degree-of-freedom (MDOF) non-linear uncoupled dynamical systems, the EMD method is attempting for the decomposition of response signals into a collection of mono-components signals, termed intrinsic mode functions (IMFs). Considering the IMFs admit a well-behaved Hilbert transform, the HT identification method has been applied for the identification of nonlinear properties. The numerical simulation of a 2-dof shear-beam building model with nonlinear stiffness illustrated the proposed technique.


2020 ◽  
Author(s):  
Sébastien Wouters ◽  
Michel Crucifix ◽  
Matthias Sinnesael ◽  
Anne-Christine Da Silva ◽  
Christian Zeeden ◽  
...  

<p>Cyclostratigraphy is increasingly used to improve the Geologic Time Scale and our understanding of past climatic systems. However, except in a few existing methodologies, the quality of the results is often not evaluated.</p><p>We propose a new methodology to document this quality, through a decomposition of a signal into a set of narrow band components from which instantaneous frequency and amplitude can be computed, using the Hilbert transform. The components can be obtained by Empirical Mode Decomposition (EMD), but also by filtering a signal (be it tuned or not) in any relevant way, and by subsequently performing EMD on the signal minus its filtered parts.</p><p>From that decomposition, verification is performed to estimate the pertinence of the results, based on different concepts that we introduce:</p><ul><li> Integrity quantifies to what extent the sum of the components is equal to the signal. It is defined as the cumulated difference between (1) the signal, and (2) the summed components of the decomposition. EMD fulfils integrity by design, except for errors caused by floating-decimal arithmetic. Ensemble Empirical Mode Decomposition (EEMD) may fail to satisfy integrity unless noisy realisations are carefully chosen in the algorithm to cancel each other when averaging the realisations. We present such an algorithm implemented in R: “extricate”, which performs EEMD in a few seconds.</li> <li> Parsimony checks that the decomposition does not generate components that heavily cancel out. We propose to quantify it as the ratio between (1) the cumulated absolute values of each component (except the trend), and (2) the cumulated absolute values of the signal (minus the trend). The trend should be ignored in the calculation, because an added trend decreases the parsimony estimation of a similar decomposition.</li> <li> IMF departure (IMFD) quantifies the departure of each component to the definition of intrinsic mode functions (IMF), from which instantaneous frequency can reliably be computed. We define it as the mean of the absolute differences of the base 2 logarithms of frequencies obtained using (1) a robust generalized zero-crossing method (GZC, which simplifies the components into extrema separated by zero-crossings) and (2) a more local method such as the Hilbert Transform.</li> <li> Reversibility is the concept that all initial data points are preserved, even after linear interpolation and tuning. This allows to revert back to the original signal and discuss the significance of each data point. To facilitate reversibility we introduce the concept of quanta (smallest depth or time interval having significance for a given sampling) and an algorithm computing the highest rational common divisor of given values in R: “divisor”.</li> </ul><p>This new methodology allows to check the final result of cyclostratigraphic analysis independently of how it was performed (i.e. a posteriori). Once the above-mentioned concepts are taken into account, the instantaneous frequencies, ratios of frequencies and amplitudes of the components can be computed and used to interpret the pertinence of the analysis in a geologically meaningful way. The instantaneity and independence of frequency and amplitude so obtained open a new way of performing time-series analysis.</p>


2014 ◽  
Vol 926-930 ◽  
pp. 1800-1805 ◽  
Author(s):  
Guo Dong Han ◽  
Shu Ting Wan ◽  
Zhan Jie Lv ◽  
Rong Hai Liu ◽  
Jin Wang ◽  
...  

This paper puts forward a kind of gearbox fault diagnosis methods which based on empirical mode decomposition (EMD), Hilbert transform, Fast Fourier Transform (FFT) and spectrum refined techniques. This method is applicable to the analysis of the nonlinear unsteady signal. First of all used wavelet denoising to the acquisition of gearbox vibrate signal, again carries on the empirical mode decomposition (EMD), than get a certain number of intrinsic mode function (imf); Choose the specific imf, based on kurtosis value, after the Hilbert transform and Fast Fourier Transform is done, the corresponding power spectrum can be obtained; To refine the power spectrum and extract the gearbox fault characteristic frequency; Then in pattern recognition and diagnosis of the gearbox fault, and compared with the normal signal characteristics. The analysis results show that the proposed method can effectively detect the gearbox fault characteristics.


2006 ◽  
Vol 74 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Z. Y. Shi ◽  
S. S. Law

This paper addresses the identification of linear time-varying multi-degrees-of-freedom systems. The identification approach is based on the Hilbert transform and the empirical mode decomposition method with free vibration response signals. Three-different types of time-varying systems, i.e., smoothly varying, periodically varying, and abruptly varying stiffness and damping of a linear time-varying system, are studied. Numerical simulations demonstrate the effectiveness and accuracy of the proposed method with single- and multi-degrees-of-freedom dynamical systems.


Author(s):  
Joaqui´n Ortega ◽  
George H. Smith

The Hilbert-Huang Transform (HHT) was proposed by Huang et al. [2] as a method for the analysis of non-linear, non-stationary time series. This procedure requires the decomposition of the signal into intrinsic mode functions using a method called empirical mode decomposition. These functions represent the essential oscillatory modes contained in the original signal. Their characteristics ensure that a meaningful instantaneous frequency is obtained through the application of the Hilbert Transform. The Hilbert Transform is applied to each intrinsic mode function and the amplitude and instantaneous frequency for every time-step is computed. The resulting representation of the energy in terms of time and frequency is defined as the Hilbert Spectrum. In previous work [7] using the HHT for the analysis of storm waves it has been observed that the number of IMFs needed for the decomposition and the amount of energy associated to different IMFs differ from what has been observed for the analysis of waves under ‘normal’ sea conditions by other authors. In this work we explore in detail the effect that the sampling rate has in the empirical mode decomposition and in the Hilbert Spectrum for storm waves. The results show that the amount of energy associated to different IMFs varies with the sampling rate and also that the number of IMFs needed for the empirical mode decomposition changes with record length.


2021 ◽  
pp. 107754632110069
Author(s):  
Sandeep Sony ◽  
Ayan Sadhu

In this article, multivariate empirical mode decomposition is proposed for damage localization in structures using limited measurements. Multivariate empirical mode decomposition is first used to decompose the acceleration responses into their mono-component modal responses. The major contributing modal responses are then used to evaluate the modal energy for the respective modes. A damage localization feature is proposed by calculating the percentage difference in the modal energies of damaged and undamaged structures, followed by the determination of the threshold value of the feature. The feature of the specific sensor location exceeding the threshold value is finally used to identify the location of structural damage. The proposed method is validated using a suite of numerical and full-scale studies. The validation is further explored using various limited measurement cases for evaluating the feasibility of using a fewer number of sensors to enable cost-effective structural health monitoring. The results show the capability of the proposed method in identifying as minimal as 2% change in global modal parameters of structures, outperforming the existing time–frequency methods to delineate such minor global damage.


Sign in / Sign up

Export Citation Format

Share Document