2021 ◽  
Vol 22 (10) ◽  
pp. 5168
Author(s):  
Maria Theresia Watzlowik ◽  
Sujaan Das ◽  
Markus Meissner ◽  
Gernot Längst

The highly complex life cycle of the human malaria parasite, Plasmodium falciparum, is based on an orchestrated and tightly regulated gene expression program. In general, eukaryotic transcription regulation is determined by a combination of sequence-specific transcription factors binding to regulatory DNA elements and the packaging of DNA into chromatin as an additional layer. The accessibility of regulatory DNA elements is controlled by the nucleosome occupancy and changes of their positions by an active process called nucleosome remodeling. These epigenetic mechanisms are poorly explored in P. falciparum. The parasite genome is characterized by an extraordinarily high AT-content and the distinct architecture of functional elements, and chromatin-related proteins also exhibit high sequence divergence compared to other eukaryotes. Together with the distinct biochemical properties of nucleosomes, these features suggest substantial differences in chromatin-dependent regulation. Here, we highlight the peculiarities of epigenetic mechanisms in P. falciparum, addressing chromatin structure and dynamics with respect to their impact on transcriptional control. We focus on the specialized chromatin remodeling enzymes and discuss their essential function in P. falciparum gene regulation.


2008 ◽  
Vol 389 (4) ◽  
pp. 323-331 ◽  
Author(s):  
David Umlauf ◽  
Peter Fraser ◽  
Takashi Nagano

Abstract Transcriptome studies have uncovered a plethora of non-coding RNAs (ncRNA) in mammals. Most originate within intergenic regions of the genome and recent evidence indicates that some are involved in many different pathways that ultimately act on genome architecture and gene expression. In this review, we discuss the role of well-characterized long ncRNAs in gene regulation pointing to their similarities, but also their differences. We will attempt to highlight a paradoxical situation in which transcription is needed to repress entire chromosomal domains possibly through the action of ncRNAs that create nuclear environments refractory to transcription.


2016 ◽  
Vol 24 ◽  
pp. S229 ◽  
Author(s):  
M.C. de Andrés ◽  
A. Takahashi ◽  
K. Hashimoto ◽  
K. Imagawa ◽  
R.O. Oreffo

Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. 1338-1345 ◽  
Author(s):  
Iain F. Davidson ◽  
Benedikt Bauer ◽  
Daniela Goetz ◽  
Wen Tang ◽  
Gordana Wutz ◽  
...  

Eukaryotic genomes are folded into loops and topologically associating domains, which contribute to chromatin structure, gene regulation, and gene recombination. These structures depend on cohesin, a ring-shaped DNA-entrapping adenosine triphosphatase (ATPase) complex that has been proposed to form loops by extrusion. Such an activity has been observed for condensin, which forms loops in mitosis, but not for cohesin. Using biochemical reconstitution, we found that single human cohesin complexes form DNA loops symmetrically at rates up to 2.1 kilo–base pairs per second. Loop formation and maintenance depend on cohesin’s ATPase activity and on NIPBL-MAU2, but not on topological entrapment of DNA by cohesin. During loop formation, cohesin and NIPBL-MAU2 reside at the base of loops, which indicates that they generate loops by extrusion. Our results show that cohesin and NIPBL-MAU2 form an active holoenzyme that interacts with DNA either pseudo-topologically or non-topologically to extrude genomic interphase DNA into loops.


Epigenetics ◽  
2008 ◽  
Vol 3 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Ahmad M. Khalil ◽  
Claes Wahlestedt

Sign in / Sign up

Export Citation Format

Share Document