2011 ◽  
Vol 11 (5) ◽  
pp. 545-556 ◽  
Author(s):  
Huei-Wen Wu ◽  
Chun-Che Lin ◽  
Shiaw-Min Hwang ◽  
Yu-Jen Chang ◽  
Gwo-Bin Lee

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
T. J. Vaughan ◽  
M. Voisin ◽  
G. L. Niebur ◽  
L. M. McNamara

Mechanical loading directs the differentiation of mesenchymal stem cells (MSCs) in vitro and it has been hypothesized that the mechanical environment plays a role in directing the cellular fate of MSCs in vivo. However, the complex multicellular composition of trabecular bone marrow means that the precise nature of mechanical stimulation that MSCs experience in their native environment is not fully understood. In this study, we developed a multiscale model that discretely represents the cellular constituents of trabecular bone marrow and applied this model to characterize mechanical stimulation of MCSs in vivo. We predicted that cell-level strains in certain locations of the trabecular marrow microenvironment were greater in magnitude (maximum ε12 = ∼24,000 με) than levels that have been found to result in osteogenic differentiation of MSCs in vitro (>8000 με), which may indicate that the native mechanical environment of MSCs could direct cellular fate in vivo. The results also showed that cell–cell adhesions could play an important role in mediating mechanical stimulation within the MSC population in vivo. The model was applied to investigate how changes that occur during osteoporosis affected mechanical stimulation in the cellular microenvironment of trabecular bone marrow. Specifically, a reduced bone volume (BV) resulted in an overall increase in bone deformation, leading to greater cell-level mechanical stimulation in trabecular bone marrow (maximum ε12 = ∼48,000 με). An increased marrow adipocyte content resulted in slightly lower levels of stimulation within the adjacent cell population due to a shielding effect caused by the more compliant behavior of adipocytes (maximum ε12 = ∼41,000 με). Despite this reduction, stimulation levels in trabecular bone marrow during osteoporosis remained much higher than those predicted to occur under healthy conditions. It was found that compensatory mechanobiological responses that occur during osteoporosis, such as increased trabecular stiffness and axial alignment of trabeculae, would be effective in returning MSC stimulation in trabecular marrow to normal levels. These results have provided novel insight into the mechanical stimulation of the trabecular marrow MSC population in both healthy and osteoporotic bone, and could inform the design three-dimensional (3D) in vitro bioreactor strategies techniques, which seek to emulate physiological conditions.


2013 ◽  
Vol 19 (21-22) ◽  
pp. 2426-2438 ◽  
Author(s):  
Borzo Gharibi ◽  
Giuseppe Cama ◽  
Marco Capurro ◽  
Ian Thompson ◽  
Sanjukta Deb ◽  
...  

2009 ◽  
Vol 132 (2) ◽  
Author(s):  
Ricarda Hess ◽  
Timothy Douglas ◽  
Kenneth A. Myers ◽  
Barbe Rentsch ◽  
Claudia Rentsch ◽  
...  

Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for bone tissue engineering applications because of their ability to differentiate into cells of the osteoblastic lineage. Mechanical stimulation is able to promote osteogenic differentiation of hMSC; however, the use of hydrostatic pressure (HP) has not been well studied. Artificial extracellular matrices containing collagen and chondroitin sulfate (CS) have promoted the expression of an osteoblastic phenotype by hMSCs. However, there has been little research into the combined effects of biochemical stimulation by matrices and simultaneous mechanical stimulation. In this study, artificial extracellular matrices generated from collagen and/or CS were coated onto polycaprolactone-co-lactide substrates, seeded with hMSCs and subjected to cyclic HP at various time points during 21 days after cell seeding to investigate the effects of biochemical, mechanical, and combined biochemical and mechanical stimulations. Cell differentiation was assessed by analyzing the expression of alkaline phosphatase (ALP) at the protein- and mRNA levels, as well as for calcium accumulation. The timing of HP stimulation affected hMSC proliferation and expression of ALP activity. HP stimulation after 6 days was most effective at promoting ALP activity. CS-containing matrices promoted the osteogenic differentiation of hMSCs. A combination of both CS-containing matrices and cyclic HP yields optimal effects on osteogenic differentiation of hMSCs on scaffolds compared with individual responses.


Sign in / Sign up

Export Citation Format

Share Document