Hydrostatic Pressure Stimulation of Human Mesenchymal Stem Cells Seeded on Collagen-Based Artificial Extracellular Matrices

2009 ◽  
Vol 132 (2) ◽  
Author(s):  
Ricarda Hess ◽  
Timothy Douglas ◽  
Kenneth A. Myers ◽  
Barbe Rentsch ◽  
Claudia Rentsch ◽  
...  

Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for bone tissue engineering applications because of their ability to differentiate into cells of the osteoblastic lineage. Mechanical stimulation is able to promote osteogenic differentiation of hMSC; however, the use of hydrostatic pressure (HP) has not been well studied. Artificial extracellular matrices containing collagen and chondroitin sulfate (CS) have promoted the expression of an osteoblastic phenotype by hMSCs. However, there has been little research into the combined effects of biochemical stimulation by matrices and simultaneous mechanical stimulation. In this study, artificial extracellular matrices generated from collagen and/or CS were coated onto polycaprolactone-co-lactide substrates, seeded with hMSCs and subjected to cyclic HP at various time points during 21 days after cell seeding to investigate the effects of biochemical, mechanical, and combined biochemical and mechanical stimulations. Cell differentiation was assessed by analyzing the expression of alkaline phosphatase (ALP) at the protein- and mRNA levels, as well as for calcium accumulation. The timing of HP stimulation affected hMSC proliferation and expression of ALP activity. HP stimulation after 6 days was most effective at promoting ALP activity. CS-containing matrices promoted the osteogenic differentiation of hMSCs. A combination of both CS-containing matrices and cyclic HP yields optimal effects on osteogenic differentiation of hMSCs on scaffolds compared with individual responses.

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Moon Sung Kang ◽  
Seung Jo Jeong ◽  
Seok Hyun Lee ◽  
Bongju Kim ◽  
Suck Won Hong ◽  
...  

Abstract Background Titanium (Ti) has been utilized as hard tissue replacement owing to its superior mechanical and bioinert property, however, lack in tissue compatibility and biofunctionality has limited its clinical use. Reduced graphene oxide (rGO) is one of the graphene derivatives that possess extraordinary biofunctionality and are known to induce osseointegration in vitro and in vivo. In this study, rGO was uniformly coated by meniscus-dragging deposition (MDD) technique to fabricate rGO-Ti substrate for orthopedic and dental implant application. Methods The physicochemical characteristics of rGO-coated Ti (rGO-Ti) substrates were evaluated by atomic force microscopy, water contact angle, and Raman spectroscopy. Furthermore, human mesenchymal stem cells (hMSCs) were cultured on the rGO-Ti substrate, and then their cellular behaviors such as growth and osteogenic differentiation were determined by a cell counting kit-8 assay, alkaline phosphatase (ALP) activity assay, and alizarin red S staining. Results rGO was coated uniformly on Ti substrates by MDD process, which allowed a decrease in the surface roughness and contact angle of Ti substrates. While rGO-Ti substrates significantly increased cell proliferation after 7 days of incubation, they significantly promoted ALP activity and matrix mineralization, which are early and late differentiation markers, respectively. Conclusion It is suggested that rGO-Ti substrates can be effectively utilized as dental and orthopedic bone substitutes since these graphene derivatives have potent effects on stimulating the osteogenic differentiation of hMSCs and showed superior bioactivity and osteogenic potential.


2021 ◽  
Vol 22 (12) ◽  
pp. 6182
Author(s):  
Ferenc Tóth ◽  
József Tőzsér ◽  
Csaba Hegedűs

BMP-7 has shown inductive potential for in vitro osteogenic differentiation of mesenchymal stem cells, which are an ideal resource for regenerative medicine. Externally applied, recombinant BMP-7 was able to induce the osteogenic differentiation of DPSCs but based on our previous results with BMP-2, we aimed to study the effect of the tetracyclin-inducible BMP-7 expression on these cells. DPSC, mock, and DPSC-BMP-7 cell lines were cultured in the presence or absence of doxycycline, then alkaline phosphatase (ALP) activity, mineralization, and mRNA levels of different osteogenic marker genes were measured. In the DPSC-BMP-7 cell line, the level of BMP-7 mRNA significantly increased in the media supplemented with doxycycline, however, the expression of Runx2 and noggin genes was upregulated only after 21 days of incubation in the osteogenic medium with doxycycline. Moreover, while the examination of ALP activity showed reduced activity in the control medium containing doxycycline, the accumulation of minerals remained unchanged in the cultures. We have found that the induced BMP-7 expression failed to induce osteogenic differentiation of DPSCs. We propose three different mechanisms that may worth investigating for the engineering of expression systems that can be used for the induction of differentiation of mesenchymal stem cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yuerong Xu ◽  
Wen Qin ◽  
Donghui Guo ◽  
Jia Liu ◽  
Mingming Zhang ◽  
...  

HPDLSCs derived from periodontal ligament tissues contribute to tooth development and tissue regeneration. Exploring the effects of long noncoding RNAs (lncRNAs) in the process of osteogenic differentiation of periodontal ligament stem cells would provide novel therapeutic strategies for tissue regeneration. The expression levels of lncRNA, which significantly changed during osteogenic differentiation, were observed by real-time quantitative PCR (q-PCR). Then, we screened for osteogenic-related lncRNA, which was initially named lncRNA-TWIST1. Moreover, we detected the mRNA expression levels of TWIST1 and osteogenesis-related genes after upregulating and downregulating lncRNA-TWIST1 in PPDLSCs (periodontal mesenchymal stem cells from periodontitis patients) and HPDLSCs (periodontal mesenchymal stem cells from healthy microenvironment), respectively. The osteogenic degree was verified by detecting ALP activity and alizarin red staining. LncRNA-TWIST1 decreased the mRNA levels of TWIST1 and promoted osteogenic differentiation in PPDLSCs, which was confirmed by the increase in osteogenesis-related gene levels (Runx2, ALP, and OCN), the increase in ALP activity, and the formation of more osteogenic nodules. In contrast, downregulating lncRNA-TWIST1 decreased the expression of osteogenesis-related genes, ALP activity, and osteogenic nodules both in PPDLSCs and in HPDLSCs. LncRNA-TWIST1 promoted osteogenic differentiation both in PPDLSCs and in HPDLSCs by inhibiting the TWIST1 expression. LncRNA-TWIST1 may be a novel therapeutic strategy to regenerate dental tissues.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4230-4230
Author(s):  
Godfrey ChiFung Chan ◽  
F.Y. Mo ◽  
K.H.K. Yip ◽  
J. Li ◽  
H. Law ◽  
...  

Abstract Background & Objective: Dental implant requires osseointegration for anchoring and human’s oral cavity has plenty of bacterial oral flora. Whether these bacteria have any effects on the human mesenchymal Stem Cells (MSCs) that can differentiate into osteoblasts remains unknown. We therefore investigated the effect of bacterial endotoxins commonly found in the oral cavity and gastrointestinal tract, namely lipopolysaccharides (LPS, Escherichia coli) and lipoteichoic acid (LTA, Streptococcus pyogenes), on the proliferation and osteogenic differentiation of MSCs. Methods: Human MSCs are derived from bone marrow (BM) of normal healthy donors. The culture condition, immunophenotyping determination and tests of differentiating functions of the human MSCs were similar to what we reported previously (Li J, Br J Haematol 2004). The proliferation of MSCs under either a 3-day or a prolonged 7-day endotoxins challenge was evaluated by XTT assay. The extent of osteogenic differentiation was examined under microscopy and measured by the increase in alkaline phosphatase (ALP) activity at day 10 and the calcium mineralization/deposition per unit volume of protein at day 14. Results: There was no significant effect of LPS and LTA on the growth and proliferation of MSCs, even under a relatively high dose. However, continued LPS challenge on MSCs under osteogenic culture condition was shown to increase the ALP activity and calcium deposition in a dose-dependent manner (100ng/ml, 1 ug/ml, 10ug/ml). No such phenomenon can be identified when LTA challenge was used. Conclusions: LPS and LTA did not show any significant effect on the proliferation and growth of human MSCs. However, LPS enhanced the osteogenic differentiation of MSCs in a dose-dependent manner. Our finding suggests that the endotoxin from bacteria commonly found in the oral cavity and gut does not have any negative impact on MSCs induced osteogenesis.


2019 ◽  
Author(s):  
Leiluo Yang ◽  
Qing Li ◽  
Junhong Zhang ◽  
Pengcheng Li ◽  
Chaoliang Wang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 927
Author(s):  
Ki-Taek Lim ◽  
Dinesh-K. Patel ◽  
Sayan-Deb Dutta ◽  
Keya Ganguly

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document