Nitrogen removal from dilute wastewater in cold climate using moving-bed biofilm reactors

1995 ◽  
Vol 67 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Bjørn Rusten ◽  
Lars J. Hem ◽  
Hallvard Ødegaard
2006 ◽  
Vol 40 (8) ◽  
pp. 1607-1615 ◽  
Author(s):  
Sari Luostarinen ◽  
Sami Luste ◽  
Lara Valentín ◽  
Jukka Rintala

2015 ◽  
Vol 73 (2) ◽  
pp. 337-344 ◽  
Author(s):  
B. Rusten ◽  
V. A. Razafimanantsoa ◽  
M. A. Andriamiarinjaka ◽  
C. L. Otis ◽  
A. K. Sahu ◽  
...  

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10–15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.


2021 ◽  
Vol 414 ◽  
pp. 125535
Author(s):  
Ellen Edefell ◽  
Per Falås ◽  
Elena Torresi ◽  
Marinette Hagman ◽  
Michael Cimbritz ◽  
...  

2015 ◽  
Vol 277 ◽  
pp. 209-218 ◽  
Author(s):  
P. Reboleiro-Rivas ◽  
J. Martín-Pascual ◽  
B. Juárez-Jiménez ◽  
J.M. Poyatos ◽  
R. Vílchez-Vargas ◽  
...  

2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


Sign in / Sign up

Export Citation Format

Share Document