Mitigation of Greenhouse Gases (GHGs) Emissions from Biological Denitrification Biofilm Process using Divalent Cations

2015 ◽  
Vol 2015 (6) ◽  
pp. 1571-1576
Author(s):  
Ahmed Eldyasti ◽  
George Nakhla
Author(s):  
William J. Dougherty ◽  
Samuel S. Spicer

In recent years, considerable attention has focused on the morphological nature of the excitation-contraction coupling system of striated muscle. Since the study of Porter and Palade, it has become evident that the sarcoplastic reticulum (SR) and transverse tubules constitute the major elements of this system. The problem still exists, however, of determining the mechamisms by which the signal to interdigitate is presented to the thick and thin myofilaments. This problem appears to center on the movement of Ca++ions between myofilaments and SR. Recently, Philpott and Goldstein reported acid mucosubstance associated with the SR of fish branchial muscle using the colloidal thorium dioxide technique, and suggested that this material may serve to bind or release divalent cations such as Ca++. In the present study, Hale's iron solution adapted to electron microscopy was applied to formalin-fixed myofibrils isolated from glycerol-extracted rabbit psoas muscles and to frozen sections of formalin-fixed rat psoas muscles.


Author(s):  
N. Panté ◽  
M. Jarnik ◽  
E. Heitlinger ◽  
U. Aebi

The nuclear pore complex (NPC) is a ∼120 MD supramolecular machine implicated in nucleocytoplasmic transport, that is embedded in the double-membraned nuclear envelope (NE). The basic framework of the ∼120 nm diameter NPC consists of a 32 MD cytoplasmic ring, a 66 MD ‘plug-spoke’ assembly, and a 21 MD nuclear ring. The ‘central plug’ seen in en face views of the NPC reveals a rather variable appearance indicating that it is a dynamic structure. Projecting from the cytoplasmic ring are 8 short, twisted filaments (Fig. 1a), whereas the nuclear ring is topped with a ‘fishtrap’ made of 8 thin filaments that join distally to form a fragile, 30-50 nm distal diameter ring centered above the NPC proper (Fig. 1b). While the cytoplasmic filaments are sensitive to proteases, they as well as the nuclear fishtraps are resistant to RNase treatment. Removal of divalent cations destabilizes the distal rings and thereby opens the fishtraps, addition causes them to reform. Protruding from the tips of the radial spokes into perinuclear space are ‘knobs’ that might represent the large lumenal domain of gp210, a membrane-spanning glycoprotein (Fig. 1c) which, in turn, may play a topogenic role in membrane folding and/or act as a membrane-anchoring site for the NPC. The lectin wheat germ agglutinin (WGA) which is known to recognize the ‘nucleoporins’, a family of glycoproteins having O-linked N-acetyl-glucosamine, is found in two locations on the NPC (Fig. 1. d-f): (i) whereas the cytoplasmic filaments appear unlabelled (Fig. 1d&e), WGA-gold labels sites between the central plug and the cytoplasmic ring (Fig. le; i.e., at a radius of 25-35 nm), and (ii) it decorates the distal ring of the nuclear fishtraps (Fig. 1, d&f; arrowheads).


Author(s):  
Soichiro Arai ◽  
Yuh H. Nakanishi

Although many electron microscopic studies on extracted chromatin have provided considerable information on chromatin condensation induced by divalent cations, there is only a little literature available on the effects of divalent cations on chromatin structure in intact nuclei. In the present study, the effects of Mg2+ on chromatin structure in isolated chicken liver nuclei were examined over a wide concentration range of Mg2+ by scanning electron microscopy.Nuclei were prepared from chicken liver by the method of Chauveau et al. with some modifications. The nuclei were suspended in 25 mM triethanolamine chloride buffer (pH7.4) with 1 mM EDTA or in the buffer with concentrations of MgCl2 varying from 1 to 50 mM. After incubation for 1 min at 0°C, glutaraldehyde was added to 1.8% and the nuclei were fixed for 1 h at 4°C. The fixed nuclei were mixed with 15% gelatin solution warmed at about 40°C, and kept at room temperature until the mixture set. The gelatin containing the nuclei was fixed with 2% glutaraldehyde for 2-4 h, and cut into small blocks. The gelatin blocks were conductive-stained with 2% tannic acid and 2% osmium tetroxide, dehydrated in a graded series of ethanol, and freeze-cracked with a razor blade in liquid nitrogen.


1986 ◽  
Vol 55 (03) ◽  
pp. 338-341 ◽  
Author(s):  
H Takahashi ◽  
W Tatewaki ◽  
M Hanano ◽  
R Nagayama ◽  
A Shibata

SummaryPlatelet-type von Willebrand’s disease (vWD) is a bleeding disorder characterized by a heightened interaction between platelets and von Willebrand factor (vWF) as the result of an intrinsic platelet abnormality (probably in GPIb). Platelet aggregability was nearly normal in response to thrombin, wheat germ agglutinin and Ricinus communis agglutinin in this disorder. Unmodified platelets showed no aggregation upon the addition of peanut agglutinin. Partially purified human vWF induced little aggregation of washed patient platelets, but the aggregation was greatly enhanced in the presence of plasma devoid of vWF. Monoclonal antibodies directed against GPIb and GPIIb/IIIa as well as EDTA completely inhibited vWF-induced aggregation. These results indicate that human vWF induces aggregation of platelet-type vWD platelets in the presence of divalent cations and some plasma cofactor(s), and that both GPIb and GPIIb/IIIa are involved in this aggregation.


2011 ◽  
Vol 3 (7) ◽  
pp. 570-572
Author(s):  
Sangeet Markanda ◽  
◽  
R K Aggarwal R K Aggarwal

Sign in / Sign up

Export Citation Format

Share Document