scholarly journals Human Monoclonal Antibody-Drug Conjugates in the Experimental Treatment of Malignant Gliomas —Studies In Vitro and In Vivo—

1994 ◽  
Vol 34 (5) ◽  
pp. 279-285 ◽  
Author(s):  
Jianhong ZHU ◽  
Hiroshi TAKAHASHI ◽  
Shozo NAKAZAWA
2018 ◽  
Author(s):  
Daniel Dransfield ◽  
Jillian M. Prendergast ◽  
David A. Eavarone ◽  
Rawan Nazer ◽  
Linah Al-Alem ◽  
...  

2015 ◽  
Vol 12 (6) ◽  
pp. 1872-1879 ◽  
Author(s):  
Penny Bryant ◽  
Martin Pabst ◽  
George Badescu ◽  
Matthew Bird ◽  
William McDowell ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0131177 ◽  
Author(s):  
Roger R. Beerli ◽  
Tamara Hell ◽  
Anna S. Merkel ◽  
Ulf Grawunder

2020 ◽  
Vol 6 (23) ◽  
pp. eaba6752 ◽  
Author(s):  
Zhefu Dai ◽  
Xiao-Nan Zhang ◽  
Fariborz Nasertorabi ◽  
Qinqin Cheng ◽  
Jiawei Li ◽  
...  

Most of the current antibody-drug conjugates (ADCs) in clinic are heterogeneous mixtures. To produce homogeneous ADCs, established procedures often require multiple steps or long reaction times. The introduced mutations or foreign sequences may cause high immunogenicity. Here, we explore a new concept of transforming CD38 enzymatic activity into a facile approach for generating site-specific ADCs. This was achieved through coupling bifunctional antibody-CD38 fusion proteins with designer dinucleotide-based covalent inhibitors with stably attached payloads. The resulting adenosine diphosphate–ribosyl cyclase–enabled ADC (ARC-ADC) with a drug-to-antibody ratio of 2 could be rapidly generated through single-step conjugation. The generated ARC-ADC targeting human epidermal growth factor receptor 2 (HER2) displays excellent stability and potency against HER2-positive breast cancer both in vitro and in vivo. This proof-of-concept study demonstrates a new strategy for production of site-specific ADCs. It may provide a general approach for the development of a novel class of ADCs with potentially enhanced properties.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2754
Author(s):  
Park ◽  
Lee ◽  
Byeon ◽  
Shin ◽  
Choi ◽  
...  

A simple liquid chromatography–quadrupole-time-of-flight–mass spectrometric assay (LC-TOF-MS/MS) has been developed for the evaluation of metabolism and pharmacokinetic (PK) characteristics of monomethyl auristatin F (MMAF) in rat, which is being used as a payload for antibody-drug conjugates. LC-TOF-MS/MS method was qualified for the quantification of MMAF in rat plasma. The calibration curves were acceptable over the concentration range from 3.02 to 2200 ng/mL using quadratic regression. MMAF was stable in various conditions. There were no significant matrix effects between rat and other preclinical species. The PK studies showed that the bioavailability of MMAF was 0% with high clearance. Additionally, the metabolite profiling studies, in vitro/in vivo, were performed. Seven metabolites for MMAF were tentatively identified in liver microsome. The major metabolic pathway was demethylation, which was one of the metabolic pathways predicted by MedChem Designer. Therefore, these results will be helpful to understand the PK, catabolism, and metabolism behavior of MMAF comprehensively when developing antibody-drug conjugates (ADCs) in the future.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 764 ◽  
Author(s):  
Dobeen Hwang ◽  
Christoph Rader

The interest in replacing the conventional immunoglobulin G (IgG) format of monoclonal antibodies (mAbs) and antibody–drug conjugates (ADCs) with alternative antibody and antibody-like scaffolds reflects a need to expand their therapeutic utility and potency while retaining their exquisite specificity, affinity, and low intrinsic toxicity. For example, in the therapy of solid malignancies, the limited tumor tissue penetration and distribution of ADCs in IgG format mitigates a uniform distribution of the cytotoxic payload. Here, we report triple variable domain Fab (TVD–Fab) as a new format that affords the site-specific and stable generation of monovalent ADCs without the Fc domain and a drug-to-antibody ratio (DAR) of 2. TVD–Fabs harbor three variable fragment (Fv) domains: one for tumor targeting and two for the fast, efficient, precise, and stable conjugation of two cargos via uniquely reactive lysine residues. The biochemical and in vitro cytotoxicity properties of a HER2-targeting TVD–Fab before and after conjugation to a tubulin inhibitor were validated. In vivo, the TVD–Fab antibody carrier revealed a circulatory half-life of 13.3 ± 2.5 h and deeper tumor tissue distribution compared to our previously reported dual variable domain (DVD)–IgG1 format. Taken together, the TVD–Fab format merits further investigations as an antibody carrier of site-specific ADCs targeting solid malignancies.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e83865 ◽  
Author(s):  
Dowdy Jackson ◽  
John Atkinson ◽  
Claudia I. Guevara ◽  
Chunying Zhang ◽  
Vladimir Kery ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 838
Author(s):  
Julien Dugal-Tessier ◽  
Srinath Thirumalairajan ◽  
Nareshkumar Jain

A summary of the key technological advancements in the preparation of antibody–oligonucleotide conjugates (AOCs) and the distinct advantages and disadvantages of AOCs as novel therapeutics are presented. The merits and demerits of the different approaches to conjugating oligonucleotides to antibodies, antibody fragments or other proteins, mainly from the perspective of AOC purification and analytical characterizations, are assessed. The lessons learned from in vitro and in vivo studies, especially the findings related to silencing, trafficking, and cytotoxicity of the conjugates, are also summarized.


Sign in / Sign up

Export Citation Format

Share Document