scholarly journals Collagenase-based Single Cell Isolation of Primary Murine Brain Endothelial Cells Using Flow Cytometry

BIO-PROTOCOL ◽  
2018 ◽  
Vol 8 (22) ◽  
Author(s):  
Cathrin Czupalla ◽  
Hanadie Yousef ◽  
Tony Wyss-Coray ◽  
Eugene Butcher
BIO-PROTOCOL ◽  
2018 ◽  
Vol 8 (22) ◽  
Author(s):  
Hanadie Yousef ◽  
Cathrin Czupalla ◽  
Davis Lee ◽  
Eugene Butcher ◽  
Tony Wyss-Coray

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Huichao Chai ◽  
Yongxiang Feng ◽  
Fei Liang ◽  
Wenhui Wang

Successful single-cell isolation is a pivotal technique for subsequent biological and chemical analysis of single cells. Although significant advances have been made in single-cell isolation and analysis techniques, most passive...


2014 ◽  
Vol 133 (2) ◽  
pp. AB142
Author(s):  
Neil Alexis ◽  
Heather Wells ◽  
Yogesh Saini ◽  
Louisa Brighton ◽  
Nancy Allbritton ◽  
...  

2016 ◽  
Vol 115 (2) ◽  
pp. 992-1002 ◽  
Author(s):  
Z. Navratilova ◽  
K. B. Godfrey ◽  
B. L. McNaughton

Neural recording technology is improving rapidly, allowing for the detection of spikes from hundreds of cells simultaneously. The limiting step in multielectrode electrophysiology continues to be single cell isolation. However, this step is crucial to the interpretation of data from putative single neurons. We present here, in simulation, an illustration of possibly erroneous conclusions that may be reached when poorly isolated single cell data are analyzed. Grid cells are neurons recorded in rodents, and bats, that spike in equally spaced locations in a hexagonal pattern. One theory states that grid firing patterns arise from a combination of band firing patterns. However, we show here that summing the grid firing patterns of two poorly resolved neurons can result in spurious band-like patterns. Thus, evidence of neurons spiking in band patterns must undergo extreme scrutiny before it is accepted. Toward this aim, we discuss single cell isolation methods and metrics.


Hybridoma ◽  
1983 ◽  
Vol 2 (2) ◽  
pp. 231-234 ◽  
Author(s):  
R.J. SIJENS ◽  
A.A.M. THOMAS ◽  
A. JACKERS ◽  
A. BOEYÉ

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Xiaohu Zhou ◽  
Han Wu ◽  
Haotian Wen ◽  
Bo Zheng

Single-cell analysis is becoming an indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. Therefore, recent developments in single-cell printing have attracted extensive attention. We review herein the recently developed bioprinting strategies with single-cell resolution, with a special focus on inkjet-like single-cell printing. First, we discuss the common cell printing strategies and introduce several typical and advanced printing strategies. Then, we introduce several typical applications based on single-cell printing, from single-cell array screening and mass spectrometry-based single-cell analysis to three-dimensional tissue formation. In the last part, we discuss the pros and cons of the single-cell strategies and provide a brief outlook for single-cell printing.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249686
Author(s):  
Diána Hudecz ◽  
Sara Björk Sigurdardóttir ◽  
Sarah Christine Christensen ◽  
Casper Hempel ◽  
Andrew J. Urquhart ◽  
...  

The blood-brain barrier (BBB) is one of the main obstacles for therapies targeting brain diseases. Most macromolecules fail to pass the tight BBB, formed by brain endothelial cells interlinked by tight junctions. A wide range of small, lipid-soluble molecules can enter the brain parenchyma via diffusion, whereas macromolecules have to transcytose via vesicular transport. Vesicular transport can thus be utilized as a strategy to deliver brain therapies. By conjugating BBB targeting antibodies and peptides to therapeutic molecules or nanoparticles, it is possible to increase uptake into the brain. Previously, the synthetic peptide GYR and a peptide derived from melanotransferrin (MTfp) have been suggested as candidates for mediating transcytosis in brain endothelial cells (BECs). Here we study uptake, intracellular trafficking, and translocation of these two peptides in BECs. The peptides were synthesized, and binding studies to purified endocytic receptors were performed using surface plasmon resonance. Furthermore, the peptides were conjugated to a fluorophore allowing for live-cell imaging studies of their uptake into murine brain endothelial cells. Both peptides bound to low-density lipoprotein receptor-related protein 1 (LRP-1) and the human transferrin receptor, while lower affinity was observed against the murine transferrin receptor. The MTfp showed a higher binding affinity to all receptors when compared to the GYR peptide. The peptides were internalized by the bEnd.3 mouse endothelial cells within 30 min of incubation and frequently co-localized with endo-lysosomal vesicles. Moreover, our in vitro Transwell translocation experiments confirmed that GYR was able to cross the murine barrier and indicated the successful translocation of MTfp. Thus, despite binding to endocytic receptors with different affinities, both peptides are able to transcytose across the murine BECs.


Sign in / Sign up

Export Citation Format

Share Document