scholarly journals Pengaruh Campuran Bahan Bakar Biodiesel WCO - Diesel terhadap Karakteristik Api Hasil Pembakaran Spray Difusi pada Concentric Jet Burner

2021 ◽  
Vol 12 (2) ◽  
pp. 459-466
Author(s):  
Sukri Sukri ◽  
◽  
Mega Nur Sasongko ◽  
Teguh Dwi Widodo

Biofuels from waste cooking oil (WCO) represent a sizable opportunity not only in terms of energy production but also as a way for sustainable development despite their low yield, higher viscosity, lengthy production time and cost. Alternatively, biodiesel can be blended at an appropriate blending ratio with convention diesel oils. The biodiesel and its blends is proved to give better emission characteristics than conventional diesel oils. This study aims to experimentally investigate the effect of the fuel blend on the combustion characteristics of WCO biodiesel. The characteristic are the droplet size, flame height, flame width and temperature distribution. In this study, the blended fuel are B0 (Solar), B10, B20, B30, B40 and B100 (WCO biodiesel). Measurement and visualization of the combustion flame for each variation of the fuel mixture was were tested at different pressures, namely 4 bar and 5 bar. The experimental results show that the droplet size increases with increasing WCO concentration in the fuel; on the other hand, visualization and calculations show that the height and width of the flame of the fuel mixture decreases Observation on the temperature distribution shows that the WCO biodiesel mixture has the potential to increase the fire temperature at certain points

2018 ◽  
Vol 7 (3.11) ◽  
pp. 113
Author(s):  
Idris Saad ◽  
Wardatul Hayah Ab Rashid ◽  
Nur Hidayah Saidon

Petroleum-based fuel reserves are drastically depleting due to a high demand on sustaining a better lifestyle. This paper presents the utilization of waste cooking oil (WCO) as an alternative fuel for diesel engine. Although WCO and conventional diesel fuel have similar physiochemical properties, the properties of WCO is considered inferior than conventional diesel fuel. It is due to higher viscosity and density of WCO while its calorific value is lower than conventional diesel fuel. In this research, unmodified WCO was blended with petrol fuel grade RON97.  Five blended fuels samples were prepared from five to 25 percent volume base with five percent step increment. The density and calorific value of all fuel blend samples together with unmodified WCO were measured and compared to the conventional diesel and RON97 fuels. Each of the blended fuel and conventional diesel were used to run a single cylinder diesel engine. The performance characteristic of the engine was recorded at different engine speeds ranging between 1500 and 3000 rpm. Results showed that the properties of blended fuel were inferior compared to the conventional diesel fuel; however, by adding 15 percent of RON97 into the unmodified WCO, the results were comparable to the conventional diesel fuel.  


Author(s):  
R.A. RaajKumar ◽  
S. Sriram ◽  
A.S. DivakarShetty ◽  
Sandeep Koundinya

As the years are passing by, the number of vehicles used for transportation is increasing. Due to this the environment is degrading and also the fossil fuels are depleting. This paper presents the performance and emission study on diesel engine using waste cooking oil with methanol as additive in various proportions. The properties such as the flash point, fire point, kinematic viscosity and the calorific values of the blends with and without additive are determined. Then all the biodiesel blends are used as fuel separately in the diesel engine. The engine performance as well as emission characteristics have been determined and compared at different blends. The blends with additive showed better properties and reduction in emission characteristics compared to diesel. The emission of CO is decreasing with increasing waste cooking oil and methanol quantity in the blends. Fuel consumption was more for the higher percentage blends with respect to increasing brake power. The emission of un-burnt hydrocarbon and oxides of nitrogen are reduced significantly with addition of methanol to fuel mixture due to higher oxygen and heat of vaporization.


2019 ◽  
Author(s):  
Vinoothan Kaliveer ◽  
Prajwal Basrithaya ◽  
Nithesh ◽  
Princeston D’Almeida ◽  
Pavan Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document