Groups and Algebras of Binary Relations

2002 ◽  
Vol 8 (1) ◽  
pp. 38-64 ◽  
Author(s):  
Steven Givant ◽  
Hajnal Andréka

AbstractIn 1941, Tarski published an abstract, finitely axiomatized version of the theory of binary relations, called the theory of relation algebras. He asked whether every model of his abstract theory could be represented as a concrete algebra of binary relations. He and Jónsson obtained some initial, positive results for special classes of abstract relation algebras. But Lyndon showed, in 1950, that in general the answer to Tarski's question is negative. Monk proved later that the answer remains negative even if one adjoins finitely many new axioms to Tarski's system. In this paper we describe a far-reaching generalization of the positive results of Jónsson and Tarski, as well as of some later, related results of Maddux. We construct a class of concrete models of Tarski's axioms—called coset relation algebras—that are very close in spirit to algebras of binary relations, but are built using systems of groups and cosets instead of elements of a base set. The models include all algebras of binary relations, and many non-representable relation algebras as well. We prove that every atomic relation algebra satisfying a certain measurability condition—a condition generalizing the conditions imposed by Jónsson and Tarski—is essentially isomorphic to a coset relation algebra. The theorem raises the possibility of providing a positive solution to Tarski's problem by using coset relation algebras instead of the standard algebras of binary relations.

1992 ◽  
Vol 57 (3) ◽  
pp. 832-843 ◽  
Author(s):  
Balázs Biró

This paper deals with relation, cylindric and polyadic equality algebras. First of all it addresses a problem of B. Jónsson. He asked whether relation set algebras can be expanded by finitely many new operations in a “reasonable” way so that the class of these expansions would possess a finite equational base. The present paper gives a negative answer to this problem: Our main theorem states that whenever Rs+ is a class that consists of expansions of relation set algebras such that each operation of Rs+ is logical in Jónsson's sense, i.e., is the algebraic counterpart of some (derived) connective of first-order logic, then the equational theory of Rs+ has no finite axiom systems. Similar results are stated for the other classes mentioned above. As a corollary to this theorem we can solve a problem of Tarski and Givant [87], Namely, we claim that the valid formulas of certain languages cannot be axiomatized by a finite set of logical axiom schemes. At the same time we give a negative solution for a version of a problem of Henkin and Monk [74] (cf. also Monk [70] and Németi [89]).Throughout we use the terminology, notation and results of Henkin, Monk, Tarski [71] and [85]. We also use results of Maddux [89a].Notation. RA denotes the class of relation algebras, Rs denotes the class of relation set algebras and RRA is the class of representable relation algebras, i.e. the class of subdirect products of relation set algebras. The symbols RA, Rs and RRA abbreviate also the expressions relation algebra, relation set algebra and representable relation algebra, respectively.For any class C of similar algebras EqC is the set of identities that hold in C, while Eq1C is the set of those identities in EqC that contain at most one variable symbol. (We note that Henkin et al. [85] uses the symbol EqC in another sense.)


1992 ◽  
Vol 57 (4) ◽  
pp. 1213-1229 ◽  
Author(s):  
Roger D. Maddux

AbstractConjecture (1) of [Ma83] is confirmed here by the following result: if 3 ≤ α < ω, then there is a finite relation algebra of dimension α, which is not a relation algebra of dimension α + 1. A logical consequence of this theorem is that for every finite α ≥ 3 there is a formula of the form S ⊆ T (asserting that one binary relation is included in another), which is provable with α + 1 variables, but not provable with only α variables (using a special sequent calculus designed for deducing properties of binary relations).


1994 ◽  
Vol 59 (2) ◽  
pp. 398-418 ◽  
Author(s):  
Roger D. Maddux

AbstractIf K is a class of semiassociative relation algebras and K contains the relation algebra of all binary relations on a denumerable set, then the word problem for the free algebra over K on one generator is unsolvable. This result implies that the set of sentences which are provable in the formalism ℒw× is an undecidable theory. A stronger algebraic result shows that the set of logically valid sentences in ℒw× forms a hereditarily undecidable theory in ℒw×. These results generalize similar theorems, due to Tarski, concerning relation algebras and the formalism ℒ×.


1997 ◽  
Vol 62 (1) ◽  
pp. 225-279 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

AbstractWe consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterized according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Finte relation algebras with homogeneous representations are characterized by first order formulas. Equivalence games are defined, and are used to establish whether an algebra is ω-categorical. We have a simple proof that the perfect extension of a representable relation algebra is completely representable.An important open problem from algebraic logic is addressed by devising another two-player game, and using it to derive equational axiomatisations for the classes of all representable relation algebras and representable cylindric algebras.Other instances of this approach are looked at, and include the step by step method.


1950 ◽  
Vol 15 (3) ◽  
pp. 197-198 ◽  
Author(s):  
Frank Harary

The object of this note is to classify the isomorphism types of all complete atomic proper relation algebras. In particular we find that the number of abstractly distinct complete atomic proper finite relation algebras of 2m elements is equal to the number of distinct partitions of the positive integer m into summands which are perfect squares.A relation algebra is called complete atomic if its Boolean algebra is complete atomic. A proper relation algebra is a relation algebra whose elements are relations. Lyndon has recently proved, by constructing an appropriate finite relation algebra, that not every complete atomic relation algebra is isomorphic to a proper relation algebra.Henceforth, let us consider a complete atomic proper relation algebra. The atoms {〈a, b〉}, {〈c, d〉} will be called connected if and only if {a, b} ⋂ {c, d} is not empty. Let the relation of connectedness over the set B of all atoms be denoted by ~. For brevity let B = {b1,b2, …}. The relation ~ is obviously reflexive and symmetric. But ~ is not transitive, since a, b, c, d distinct implies {〈a, 0〉} ~ {〈b, c〉}, {〈b, c〉} ~ {〈c, d〉}, and {〈a, b〉} ≁ {〈c, d〉}.


2007 ◽  
Vol 72 (2) ◽  
pp. 673-703 ◽  
Author(s):  
Robin Hirsch

AbstractWe show, for any ordinal γ ≥ 3, that the class ℜaCAγ is pseudo-elementary and has a recursively enumerable elementary theory. ScK denotes the class of strong subalgebras of members of the class K. We devise games, Fn (3 ≤ n ≤ ω), G, H, and show, for an atomic relation algebra with countably many atoms, thatfor 3 ≤ n < ω. We use these games to show, for γ > 5 and any class K of relation algebras satisfyingthat K is not closed under subalgebras and is not elementary. For infinite γ, the inclusion ℜaCAγ ⊂ ScℜaCAγ is strict.For infinite γ and for a countable relation algebra we show that has a complete representation if and only if is atomic and ∃ has a winning strategy in F (At()) if and only if is atomic and ∈ ScℜaCAγ.


2018 ◽  
Vol 83 (04) ◽  
pp. 1595-1609 ◽  
Author(s):  
STEVEN GIVANT ◽  
HAJNAL ANDRÉKA

AbstractGivant [6] generalized the notion of an atomic pair-dense relation algebra from Maddux [13] by defining the notion of a measurable relation algebra, that is to say, a relation algebra in which the identity element is a sum of atoms that can be measured in the sense that the “size” of each such atom can be defined in an intuitive and reasonable way (within the framework of the first-order theory of relation algebras). In Andréka--Givant [2], a large class of examples of such algebras is constructed from systems of groups, coordinated systems of isomorphisms between quotients of the groups, and systems of cosets that are used to “shift” the operation of relative multiplication. In Givant--Andréka [8], it is shown that the class of these full coset relation algebras is adequate to the task of describing all measurable relation algebras in the sense that every atomic and complete measurable relation algebra is isomorphic to a full coset relation algebra.Call an algebra $\mathfrak{A}$ a coset relation algebra if $\mathfrak{A}$ is embeddable into some full coset relation algebra. In the present article, it is shown that the class of coset relation algebras is equationally axiomatizable (that is to say, it is a variety), but that no finite set of sentences suffices to axiomatize the class (that is to say, the class is not finitely axiomatizable).


2012 ◽  
Vol 77 (4) ◽  
pp. 1211-1244 ◽  
Author(s):  
Robin Hirsch ◽  
Marcel Jackson

AbstractIn this article we establish the undecidability of representability and of finite representability as algebras of binary relations in a wide range of signatures. In particular, representability and finite representability are undecidable for Boolean monoids and lattice ordered monoids, while representability is undecidable for Jónsson's relation algebra. We also establish a number of undecidability results for representability as algebras of injective functions.


2002 ◽  
Vol 67 (1) ◽  
pp. 197-213 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractWe confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a first-order language ℒ with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which may occur arbitrarily many times), X has a proof containing exactly α + 1 variables, but X has no proof containing only α variables. This solves a problem posed by Tarski and Givant in 1987.


Sign in / Sign up

Export Citation Format

Share Document