A minimal Prikry-type forcing for singularizing a measurable cardinal

2013 ◽  
Vol 78 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Peter Koepke ◽  
Karen Räsch ◽  
Philipp Schlicht

AbstractRecently, Gitik, Kanovei and the first author proved that for a classical Prikry forcing extension the family of the intermediate models can be parametrized by /finite. By modifying the standard Prikry tree forcing we define a Prikry-type forcing which also singularizes a measurable cardinal but which is minimal, i.e., there are no intermediate models properly between the ground model and the generic extension. The proof relies on combining the rigidity of the tree structure with indiscernibility arguments resulting from the normality of the associated measures.


2005 ◽  
Vol 2005 (1) ◽  
pp. 69-85 ◽  
Author(s):  
J. P. Lampreia ◽  
R. Severino ◽  
J. Sousa Ramos

We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the∗-product induced on the associated Markov shifts.



2007 ◽  
Vol 72 (1) ◽  
pp. 285-304 ◽  
Author(s):  
Athanassios Tzouvaras

AbstractWe give a necessary and sufficient condition in order that a type-shifting automorphism be constructed on a model of the Theory of Simple Types (TST) by forcing. Namely it is proved that, if for every n ≥ 1 there is a model of TST in the ground model M of ZFC that contains an n-extendible coherent pair, then there is a generic extension M[G] of M that contains a model of TST with a type-shifting automorphism, and hence M[G] contains a model of NF. The converse holds trivially. It is also proved that there exist models of TST containing 1-extendible coherent pairs.



2011 ◽  
Vol 76 (2) ◽  
pp. 729-736
Author(s):  
Barnabás Farkas

AbstractWe prove the following version of Hechler's classical theorem: For each partially ordered set (Q, ≤) with the property that every countable subset of Q has a strict upper bound in Q, there is a ccc forcing notion such that in the generic extension for each tall analytic P-ideal (coded in the ground model) a cofinal subset of is order isomorphic to (Q, ≤).



2016 ◽  
Vol 81 (3) ◽  
pp. 814-832 ◽  
Author(s):  
JULIA KNIGHT ◽  
ANTONIO MONTALBÁN ◽  
NOAH SCHWEBER

AbstractIn this paper, we investigate connections between structures present in every generic extension of the universe V and computability theory. We introduce the notion of generic Muchnik reducibility that can be used to compare the complexity of uncountable structures; we establish basic properties of this reducibility, and study it in the context of generic presentability, the existence of a copy of the structure in every extension by a given forcing. We show that every forcing notion making ω2 countable generically presents some countable structure with no copy in the ground model; and that every structure generically presentable by a forcing notion that does not make ω2 countable has a copy in the ground model. We also show that any countable structure ${\cal A}$ that is generically presentable by a forcing notion not collapsing ω1 has a countable copy in V, as does any structure ${\cal B}$ generically Muchnik reducible to a structure ${\cal A}$ of cardinality ℵ1. The former positive result yields a new proof of Harrington’s result that counterexamples to Vaught’s conjecture have models of power ℵ1 with Scott rank arbitrarily high below ω2. Finally, we show that a rigid structure with copies in all generic extensions by a given forcing has a copy already in the ground model.



2012 ◽  
Vol 77 (3) ◽  
pp. 1011-1046 ◽  
Author(s):  
Philipp Lücke

AbstractLet κ be an infinite cardinal. A subset of (κκ)n is a -subset if it is the projection p[T] of all cofinal branches through a subtree T of (>κκ)n+1 of height κ. We define and -subsets of (κκ)n as usual.Given an uncountable regular cardinal κ with κ = κ<κ and an arbitrary subset A of κκ, we show that there is a <κ-closed forcing ℙ that satisfies the κ+-chain condition and forces A to be a -subset of κκ in every ℙ-generic extension of V. We give some applications of this result and the methods used in its proof.(i) Given any set x, we produce a partial order with the above properties that forces x to be an element of L.(ii) We show that there is a partial order with the above properties forcing the existence of a well-ordering of κκ whose graph is a -subset of κκ × κκ.(iii) We provide a short proof of a result due to Mekler and Väänänen by using the above forcing to add a tree T of cardinality and height κ such that T has no cofinal branches and every tree from the ground model of cardinality and height κ without a cofinal branch quasi-order embeds into T.(iv) We will show that generic absoluteness for -formulae (i.e., formulae with parameters which define -subsets of κκ) under <κ-closed forcings that satisfy the κ+-chain condition is inconsistent.In another direction, we use methods from the proofs of the above results to show that - and -subsets have some useful structural properties in certain ZFC-models.



2019 ◽  
Vol 84 (1) ◽  
pp. 320-342
Author(s):  
OMER BEN-NERIA

AbstractWe study the notion of tightly stationary sets which was introduced by Foreman and Magidor in [8]. We obtain two consistency results showing that certain sequences of regular cardinals ${\langle {\kappa _n}\rangle _{n < \omega }}$ can have the property that in some generic extension, every ground-model sequence of fixed-cofinality stationary sets ${S_n} \subseteq {\kappa _n}$ is tightly stationary. The results are obtained using variations of the short-extenders forcing method.



1981 ◽  
Vol 46 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Arthur W. Apter

Ever since Cohen invented forcing in 1963, people have studied the properties that cardinals can have in generic extensions of the ground model. A very early result of Lévy shows that if κ is a regular cardinal and λ > κ is strongly inaccessible, then there is a notion of forcing which collapses every cardinal strictly between κ and λ yet preserves every other cardinal. This, of course, answers one question of the genre “What properties can a cardinal have in a generic extension?”Another question of the same genre that can be asked is the following: Is it possible to have a generic extension of the ground model in which all cardinals are preserved and yet the cofinalities of some cardinals are different? This question was first answered in the affirmative by Prikry, who proved the following theorem.Theorem 1.1 (Prikry [5]). Assume that V ⊨ “ZFC + κ is measurable”. Then there is a notion of forcing, P, such that for G V-generic over P:(1) V and V[G] have the same cardinals.(2) V and V[G] have the same bounded subsets of κ.(3) V[G], i.e, V[G] ⊨ “κ is Rowbottom”.(4) V[G] ⊨ “cof(κ) = ω”.Prikry's result naturally raises the following question: Is it possible to get a generic extension in which cardinals are preserved and yet the cofinalities of certain cardinals are different from the ground model's but are uncountable? This question was first answered in the affirmative by Magidor, who proved the following theorem.



1989 ◽  
Vol 54 (3) ◽  
pp. 700-707 ◽  
Author(s):  
Moti Gitik

Suppose that I is a precipitous ideal over a cardinal κ and j is a generic embedding of I. What is the nature of j? If we assume the existence of a supercompact cardinal then, by Foreman, Magidor and Shelah [FMS], it is quite unclear where some of such j's are coming from. On the other hand, if ¬∃κ0(κ) = κ++, then, by Mitchell [Mi], the restriction of j to the core model is its iterated ultrapower by measures of it. A natural question arising here is if each iterated ultrapower of can be obtained as the restriction of a generic embedding of a precipitous ideal. Notice that there are obvious limitations. Thus the ultrapower of by a measure over λ cannot be obtained as a generic embedding by a precipitous ideal over κ ≠ λ. But if we fix κ and use iterated ultrapowers of which are based on κ, then the answer is positive. Namely a stronger statement is true:Theorem. Let τ be an ordinal and κ a measurable cardinal. There exists a generic extension V* of V so that NSℵ1 (the nonstationary ideal on ℵ1) is precipitous and, for every iterated ultrapower i of V of length ≤ τ by measures of V based on κ, there exists a stationary set forcing “the generic ultrapower restricted to V is i”.Our aim will be to prove this theorem. We assume that the reader is familiar with the paper [JMMiP] by Jech, Magidor, Mitchell and Prikry. We shall use the method of that paper for constructing precipitous ideals. Ideas of Levinski [L] for blowing up 2ℵ1 preserving precipitousness and of our own earlier paper [Gi] for linking together indiscernibles will be used also.



1985 ◽  
Vol 50 (2) ◽  
pp. 502-509
Author(s):  
Marco Forti ◽  
Furio Honsell

T. Jech [4] and M. Takahashi [7] proved that given any partial ordering R in a model of ZFC there is a symmetric submodel of a generic extension of where R is isomorphic to the injective ordering on a set of cardinals.The authors raised the question whether the injective ordering of cardinals can be universal, i.e. whether the following axiom of “cardinal universality” is consistent:CU. For any partially ordered set (X, ≼) there is a bijection f:X → Y such that(i.e. x ≼ y iff ∃g: f(x) → f(y) injective). (See [1].)The consistency of CU relative to ZF0 (Zermelo-Fraenkel set theory without foundation) is proved in [2], but the transfer method of Jech-Sochor-Pincus cannot be applied to obtain consistency with full ZF (including foundation), since CU apparently is not boundable.In this paper the authors define a model of ZF + CU as a symmetric submodel of a generic extension obtained by forcing “à la Easton” with a class of conditions which add κ generic subsets to any regular cardinal κ of a ground model satisfying ZF + V = L.



1999 ◽  
Vol 64 (1) ◽  
pp. 199-215 ◽  
Author(s):  
U. Felgner ◽  
J. K. Truss

AbstractIt is shown that the boolean prime ideal theorem BPIT: every boolean algebra has a prime ideal, does not follow from the order-extension principle OE: every partial ordering can be extended to a linear ordering. The proof uses a Fraenkel–Mostowski model, where the family of atoms is indexed by a countable universal-homogeneous boolean algebra whose boolean partial ordering has a ‘generic’ extension to a linear ordering. To illustrate the technique for proving that the order-extension principle holds in the model we also study Mostowski's ordered model, and give a direct verification of OE there. The key technical point needed to verify OE in each case is the existence of a support structure.



Sign in / Sign up

Export Citation Format

Share Document