A unified completeness theorem for quantified modal logics

2002 ◽  
Vol 67 (4) ◽  
pp. 1483-1510 ◽  
Author(s):  
Giovanna Corsi

AbstractA general strategy for proving completeness theorems for quantified modal logics is provided. Starting from free quantified modal logic K. with or without identity, extensions obtained either by adding the principle of universal instantiation or the converse of the Barcan formula or the Barcan formula are considered and proved complete in a uniform way. Completeness theorems are also shown for systems with the extended Barcan rule as well as for some quantified extensions of the modal logic B. The incompleteness of Q°.B + BF is also proved.

2005 ◽  
Vol 11 (3) ◽  
pp. 428-438 ◽  
Author(s):  
Roman Kontchakov ◽  
Agi Kurucz ◽  
Michael Zakharyaschev

AbstractWe prove that the two-variable fragment of first-order intuitionistic logic is undecidable, even without constants and equality. We also show that the two-variable fragment of a quantified modal logic L with expanding first-order domains is undecidable whenever there is a Kripke frame for L with a point having infinitely many successors (such are, in particular, the first-order extensions of practically all standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many quantified modal logics, including those in the standard nomenclature above, even the monadic two-variable fragments turn out to be undecidable.


1974 ◽  
Vol 39 (3) ◽  
pp. 496-508 ◽  
Author(s):  
Michael Mortimer

This paper is concerned with extending some basic results from classical model theory to modal logic.In §1, we define the majority of terms used in the paper, and explain our notation. A full catalogue would be excessive, and we cite [3] and [7] as general references.Many papers on modal logic that have appeared are concerned with (i) introducing a new modal logic, and (ii) proving a weak completeness theorem for it. Theorem 1, in §2, in many cases allows us to conclude immediately that a strong completeness theorem holds for such a logic in languages of arbitrary cardinality. In particular, this is true of S4 with the Barcan formula.In §3 we strengthen Theorem 1 for a number of modal logics to deal with the satisfaction of several sets of sentences, and so obtain a realizing types theorem. Finally, an omitting types theorem, generalizing the result for classical logic (see [5]) is proved in §4.Several consequences of Theorem 1 are already to be found in the literature. [2] gives a proof of strong completeness in languages of arbitrary cardinality of various logics without the Barcan formula, and [8] for some logics in countable languages with it. In the latter case, the result for uncountable languages is cited, without proof, in [1], and there credited to Montague. Our proof was found independently.


1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


1988 ◽  
Vol 34 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Giovanna Corsi

2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


Sign in / Sign up

Export Citation Format

Share Document